posted on 2024-01-25, 15:08authored byJE Kim, T Westerhold, L Alegret, AJ Drury, U Röhl, EM Griffith
The marine biological carbon pump, which exports organic carbon out of the surface ocean, plays an essential role in sequestering carbon from the atmosphere, thus impacting climate and affecting marine ecosystems. Orbital variations in solar insolation modulate these processes, but their influence on the tropical Pacific during the Late Cretaceous is unknown. Here we present a high-resolution composite record of elemental barium from deep-sea sediments as a proxy for organic carbon export out of the surface oceans (i.e., export production) from Shatsky Rise in the tropical Pacific. Variations in export production in the Pacific during the Maastrichtian, from 71.5 to 66 million years ago, were dominated by precession and less so by eccentricity modulation or obliquity, confirming that tropical surface-ocean carbon dynamics were influenced by seasonal insolation in the tropics during this greenhouse period. We suggest that precession paced primary production in the tropical Pacific and recycling in the euphotic zone by changing water column stratification, upwelling intensity, and continental nutrient fluxes. Benthic foraminiferal accumulation rates covaried with export production, providing evidence for bentho-pelagic coupling of the marine biological carbon pump across these high-frequency changes in a cool greenhouse planet.
Funding
This research has been supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), who provided funding to Thomas Westerhold and Ursula Röhl (project no. 320221997), and by grant no. PID2019-105537RB-I00 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe” to Laia Alegret. Funding was also provided by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – EXC-2077 – 390741603. This work was also supported in part by Ohio State Friends of Orton Hall, who provided funding to Ji-Eun Kim, and US National Science Foundation grant no. OCE-1536630 to Elizabeth M. Griffith.
History
Author affiliation
School of Geography, Geology and the Environment, University of Leicester