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ABSTRACT: Mechanisms underlying adverse birth and later in
life health effects from exposure to air pollution during the prenatal
period have not been not fully elucidated, especially in the context
of mixtures. We assessed the effects of prenatal exposure to
mixtures of air pollutants of particulate matter (PM), PM2.5, PM10,
nitrogen oxides, NO2, NOx, ultrafine particles (UFP), and oxidative
potential (OP) of PM2.5 on infant birthweight in four European
birth cohorts and the mechanistic underpinnings through cross-
omics of metabolites and inflammatory proteins. The association
between mixtures of air pollutants and birthweight z-scores
(standardized for gestational age) was assessed for three different
mixture models, using Bayesian machine kernel regression
(BKMR). We determined the direct effect for PM2.5, PM10, NO2,
and mediation by cross-omic signatures (identified using sparse partial least-squares regression) using causal mediation BKMR
models. There was a negative association with birthweight z-scores and exposure to mixtures of air pollutants, where up to −0.21 or
approximately a 96 g decrease in birthweight, comparing the 75th percentile to the median level of exposure to the air pollutant
mixture could occur. Shifts in birthweight z-scores from prenatal exposure to PM2.5, PM10, and NO2 were mediated by molecular
mechanisms, represented by cross-omics scores. Interleukin-17 and epidermal growth factor were identified as important
inflammatory responses underlyingair pollution-associated shifts in birthweight. Our results signify that by identifying mechanisms
through which mixtures of air pollutants operate, the causality of air pollution-associated shifts in birthweight is better supported,
substantiating the need for reducing exposure in vulnerable populations.

■ INTRODUCTION

Mechanisms underlying adverse birth and later in life health
effects from exposure to air pollution during the prenatal
period have not been fully elucidated, especially in the context
of multiple air pollutants and mixtures. Anthropogenic sources
of ambient air pollution are composed of complex mixtures,
where the main pollutants found in urban areas are particulate
matter (PM) with a diameter of 10 μm or less (PM10) and a
diameter of 2.5 μm or less (PM2.5), ozone (O3), sulfur dioxide
(SO2), nitrogen oxides (NOx) composed of nitrogen dioxide
(NO2) and nitric oxide (NO), black carbon (BC), ultrafine
particles with a diameter of 0.1 μm or less (UFP), and soot.
Despite single and co-pollutant studies on a few of these air
pollutants,1 the cumulative and interactive effects of these
mixtures on birth outcomes are not well understood.
Identifying the effects of mixtures of air pollution is imperative,
as rarely does exposure occur to only a single component and
multiple components likely have interactive effects on health.
Additionally, considering potential biological mechanisms

underlying prenatal air pollution-associated health effects, we
have yet to investigate mechanisms as mediators on causal
paths leading to adverse birth outcomes. Taken together, there
is a need for an exposome approach during this critical and
sensitive developmental window. Such an approach accounts
for the external exposome of multiple exposures that are
assessed simultaneously and the internal exposome, which
represents individual’s responses to the environmental
exposures.2

Numerous studies have found substantial impacts of air
pollution on infant birthweight, such as low birthweight,
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including evidence from several meta-analyses.3−7 Importantly,
shifts in birthweight are associated with neonatal morbidity
and mortality, but are also a main risk factor for developmental
problems such as asthma and obesity.8 Most studies of air
pollution-associated shifts in birthweight focus on one or a few
pollutants, with a limited number of studies investigating
effects from exposure to mixtures of air pollutants,9−14 and
rarely are interactive and nonlinear effects accounted for.
Additionally, many previous studies use traditional regression
methods to obtain effect estimates, which has limitations due
to correlations among different air pollutants, hindering the
ability to assess their individual or combined health effects.15

The application of new multipollutant statistical methods is
underutilized.16 Furthermore, previous research has mostly
concentrated on commonly monitored air pollutants of carbon
monoxide (CO), NO2, PM2.5, and PM10, where results have
been inconsistent in terms of singling out a particular pollutant
or combination of pollutants that are consistently inversely
associated with birthweight. However, there is emerging
evidence that UFP and factors such as oxidative potential
(OP) of PM2.5, a recent characterization of particulate matter
that is likely to reflect toxicity, may have impacts on health. A
recent study found that OP may potentially modify the impact
of PM2.5 on the risk of low birthweight and preterm birth.17

Extended, yet inconclusive, research has been conducted
regarding the biological mechanisms through which air
pollution could influence shifts in birthweight. Inflammation,
oxidative stress, placental dysfunction, coagulation, endothelial
function, and hemodynamic responses have been put forth as
putative mechanisms.18,19 Prenatal exposure to air pollution
leads to potential chronic systematic inflammation; where,
maternal inhalation of airborne particles and gaseous pollutants
induce an inflammatory reaction in the lungs of the mother,
releasing proinflammatory cytokines, and/or via maternal
oxidative stress, and/or through ambient particulates that are
transported through the placental barrier in utero, whereby all
paths potentially lead to an inflammatory response of the
fetus.20−22 Likely, the inflammatory responses from prenatal
exposure to air pollution are regulated by processes at multiple
levels of biological organization, which may be assessed
through various ‘omics platforms. A few studies have
investigated single ‘omic responses from prenatal exposure to
air pollution, of the epigenome23−28 and transcriptome.29−31

Yet, fewer have investigated the metabolome32,33 and
proteome, and no study has examined cross-omics (the
relationship of more than one ‘omic to one another) responses
from prenatal exposure to mixtures of air pollution. This is
crucial as single ‘omic measures may not capture the full
biological complexity, whereas interactive internal responses of
cross-omics may be more informative of biological pathways
involved in the regulation of cellular processes that underlie air
pollution exposure.
In the present study, we take an exposome approach to

determine the effects of prenatal exposure to multiple air
pollutants of PM2.5, PM10, NO2, NOx, UFP, and OP on infant
birthweight in four European birth cohorts, by incorporating
multipollutants into models and by assessing simutaneously
multiple molecular signatures. We have two aims in this work:
the first is exploratory, to assess the external exposome,
namely, to identify the effects (single, joint, and interactive) of
mixtures of multiple air pollutants on birthweight, and the
second is to determine the molecular internal responses from
exposure to multiple air pollutants, represented by the

interactive cross-talk of metabolomic signatures and targeted
inflammatory proteins, to determine if they act as mediating
mechanisms between prenatal exposure to multiple air
pollutants and infant birthweight. These aims build off of
previous work, where we identified epigenetic shifts from
prenatal air pollution.26 Exposure to atmospheric air pollution
is highly prevalent, and yet a controllable risk factor for shifts in
birthweight and other adverse birth outcomes. This work may
aid in determining the underlying mechanisms of air pollution-
driven birth outcomes, substantiating further evidence to
mitigate exposures for prevention of air pollution-associated
birth outcomes.

■ MATERIALS AND METHODS
Cohort Description. Participants in the study were from

mother−child cohorts within the EXPOsOMICS consortium34

comprising a subset of four population-based cohorts with
measurements of the internal and external exposome from
representative subjects from a Belgium cohort, ENVIRon-
mental influence ON AGEing (ENVIRONAGE);35 a Spanish
cohort, INfancia y Medio Ambiente (Environment and
Childhood) (INMA);36 a Greek cohort, Rhea;37 and an
Italian cohort, the Turin center of the Piccolipiu ̀ study.38
Detailed information about the selection of these participants
and methods has been previously described,39 and is presented
in the Supporting Information. Briefly, selection for the subset
was conducted randomly from each cohort (N = 199 for
ENVIRONAGE, N = 99 for Piccolipiu,̀ N = 100 for INMA and
N = 100 for Rhea) for those that had sufficient cord blood
sample volume and quality, and available covariate data.
Demographic and pregnancy information was harmonized
across the cohorts and includes maternal and paternal
education (trichotomized into primary school, secondary
school, or university degree and higher), maternal age at
delivery, maternal pre-pregnancy and paternal body mass index
(BMI (kg/m2)), exposure to tobacco smoke during the
prenatal period (dichotomized as yes/no) measured for both
active maternal smoking, and maternal exposure to passive
smoke. Birth characteristics were derived from medical records
and include gestational age in weeks measured by the last
menstrual period or via ultrasound, sex of infant, and parity
(trichotomized as primiparas for mothers who had not
previously had a live birth, or multiparas if this was their
second birth or multiparas of more than two for those who had
experienced more than two births) and season of conception,
which may represent factors such as temperature and humidity,
based on an estimated date of conception (categorized into
four seasons: January−March, April−June, July−September,
October−December). Birthweight in grams was standardized
using sex-specific gestational age z-scores using international
growth standards.40 The outcome of standardized birthweight
by gestational age z-scores, versus assessing raw birthweight
and adjusting for gestational age, was chosen for several
reasons. The first was for the potential role of gestational age as
a mediator, whereby adjusting could result in biased
estimates.41 Second, birthweight rises in a nonlinear pattern
as gestational age increases; thus, adjustment may result in
bias.42 However, the use of z-scores accounts for differences
across the gestational period in a precise manner, as it
considers nonlinear growth, which may reduce both bias and
potential residual confounding42 and has previously been
examined in prenatal studies for the effects of air pollution on
birthweight.43,44
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External Exposome: Exposure Assessment of Air
Pollutants. We assessed prenatal exposure to air pollution
for seven different air pollutants including PM2.5, PM10, NO2,
NOx, OP, a measure of the capacity of PM to deplete certain
antioxidant molecules for ascorbic acid (OPAA) and for
glutathione (OPGSH), and UFP as the annual average for the
year before birth. Exposure assessment has been previously
described for all EXPOsOMICS cohorts39,45,46 and is further
detailed in the Supporting Information.
To address mixtures of air pollutants, we first consider all

pollutants that were assessed in each cohort (n = 498), a three-
pollutant mixture of PM2.5, PM10, and NO2. NOx, OPAA,
OPGSH, and UFP were not measured in all cohorts, where in
ENVIRONAGE, NOx was not measured and UFP readings
were not reliable, and in Rhea, OP was not measured.
Therefore, we assessed a five-pollutant mixture of PM2.5, PM10,
NO2, NOx, and UFP in all cohorts except ENVIRONAGE (n
= 298) and a five-pollutant mixture of PM2.5, PM10, NO2,
OPAA, and OPGSH in all cohorts except Rhea (n = 398). The
average annual exposure levels were also categorized as above
and below the EU Ambient Air Quality Directives (EUAQ) and
the WHO recommended guidelines (WHOAQ) to determine
the amount of women who were exposed to above or below
the annual limit values. For PM2.5, the limit value for EUAQ is
25 μg/m3, and for WHOAQ, it is 10 μg/m

3; for PM10, the EUAQ
is set to 40 and 20 μg/m3 for WHOAQ; and for NO2, they are
both set to not exceed 40 μg/m3. There are no current limit
values set for the other pollutants.
Internal Exposome: Multi-Omics Measurements. The

internal exposome, of ‘omics representing the metabolome and
a set of targeted proteins representing a targeted inflammatory
proteome, was measured using cord blood collected at birth
that was stored at each cohort center at −80 °C. Full details of
the omic’s assessments are presented in the Supporting
Information. Briefly, untargeted metabolomics analyses were
carried out using high-resolution mass spectrometry coupled to
ultraperformance liquid chromatography. Samples were
analyzed in a randomized order as a single uninterrupted
batch; after quality control, this resulted in 4712 identified
features, with tentative annotations assigned by the Mummi-
chog program to 1629 features.47 Proteins were analyzed in
stored cord blood, and those included in the present study
were among those that were detectable and/or imputed using a
targeted inflammatory protein panel, which included 16
proteins. These proteins were chosen across several different
EXPOsOMICS cohorts for their association with air
pollutants.39 Proteins were analyzed using Luminex panels A
and B and ELISA. We measured Tumor Necrosis Factor α
(TNF-α), Interferon-γ−inducible protein 10 (IP-10), Inter-
leukin 1 receptor Antagonist (IL-1rA), Granulocyte-colony
stimulating factor (GCSF), Vascular Endothelial Growth
Factor (VEGF), Human Macrophage-derived Chemokine
(MDC), Periostin, Interleukin 8 (IL-8), Interleukin 17 (IL-
17), Epidermal Growth Factor (EGF), Macrophage Inflam-
matory protein 1 (MIP1), Growth-regulated protein (GRO),
Interleukin 6 (IL-6), Myeloperoxidase (MPO), C-reactive
protein (CRP), and Monocyte Chemoattractant protein
(MCP-1).
Statistical Analyses. All analyses were performed with the

R statistical software (version 3.4; R Development Core
Team). The correlation between air pollutants was assessed
using Pearson’s correlation coefficient (r2). Summary statistics
were calculated for the exposures, covariates, and outcome.

Because PM2.5, PM10, and NO2 have recommended limit
values set by the EU and WHO, data are graphically presented
as above and below these thresholds.
To assess the effects of prenatal exposure to mixtures of air

pollutants on birthweight, we used Bayesian kernel machine
regression (BKMR).48 This approach allowed for flexible
modeling for potential joint effects of exposures, linear/
nonlinear relationships between the exposures and outcome,
and has recently been extended into mediation models,
facilitating our incorporation of ‘omics as a mediator. Another
advantage of the BKMR method, as previously outlined, is that
it was developed to study environmental mixtures, and in its
application, we can determine: (1) if exposure to the mixture is
associated with the outcome of interest (the direct effect of the
mixture); (2) what the exposure−response relationships are
between individual chemical exposures and outcome (the
direct effects of individual pollutants); and (3) whether the
components of the mixture interacts (the direct effect of
interactions on an outcome).49 Because birthweight may
depend on a subset of the mixture components, we conduct a
component-wise variable selection, allowing each of the
individual air pollutants to enter the model. Fitting the models
with variable selection allowed us to estimate the posterior
inclusion probability (PIP) for each of the exposures, where we
set the threshold of 0.5 for the PIP variable selection.
Specifically, we model birthweight z-scores as a smooth
function h, represented using a kernel function, on the logged
exposure variables, adjusting for potential confounders that
were scaled. We apply BKMR to the three different mixture
models of air pollutants described above: three-pollutant
model of PM2.5, PM10, and NO2; five-pollutant model of PM2.5,
PM10, NO2, NOx, and UFP; and five-pollutant model of PM2.5,
PM10, NO2, OPAA, and OPGSH. The combinations of air
pollutants in each model were chosen based on available data
for each cohort. Cohorts were pooled and models were
adjusted for a set of potential confounders of season of
conception (categorical), sex (categorical), parity (categorical),
maternal age (continuous), education of the mother and father
(categorical), active and passive smoking during pregnancy
(categorical), and maternal and paternal BMI (continuous),
and a fixed effect for cohort, selected based on a directed
acyclic graph for their association with the exposures, outcome,
and not on the causal path (Figure S1). For each model,
linearity/nonlinearity was assessed by estimating the univariate
exposure−response functions and the overall effect of the
mixture (estimates and 95% confidence intervals). We also
estimated the change in birthweight z-scores comparing
exposures at a particular percentile to exposures at their
median value. The median value, within our data, was selected
to facilitate comparability to other air pollution studies and
because there are not yet environmental standards/cutoff
values developed for air pollution mixtures (limiting our
assessments based on regulatory levels).

Internal Exposome: Cross-Omics Assessment. To
assess the internal exposome, we determined relationships
between cord blood metabolomic features and targeted
inflammatory proteins. Cross-omics variable selection was
conducted between cord blood inflammatory proteins (n = 16)
and the cord blood metabolome (n = 4712). Variable selection
and the correlation structure of each ‘omic to one another, was
determined by identifying which components were linear
combinations of predictors and responses by maximizing their
variance-covariance, using sparse partial least-squares regres-
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sion (sPLS).50 Variable selection was achieved by LASSO, and
dimension reduction was achieved by imposing sparsity in the
loading coefficients. Each of the latent components is a linear
combination of the original variables. We ran sPLS for variable
selection between two ‘omics at a time. We ran sPLS on X
(sPLSX), sPLS on Y (sPLSY), and sPLS on X and Y (sPLSXY).
For example to compute, sPLSX, the proteins (X) loading
coefficients are decreased to 0 for those proteins that are least
informative to the metabolomic features, whereas the Y loading
coefficients for sPLSY correspond to shrinking the metab-
olomic features that are least informative for the proteins.
Together, these models aid in identifying the most relevant
‘omic respective to one another. Calibration of the sPLS
models was done using fivefold cross-validation, which was
independently repeated 1000 times. More details are provided
in the Supporting Information. Scores from the sPLSXY model
were derived from the variates of X (proteins that best
predicted metabolomic features) and the variates of Y
(metabolomic features that best predicted proteins) to use in
mediation analysis (described below). Pathway analysis of the
metabolomic features identified through cross-omics was
carried out using the Mummichog program.51

Mechanistic Assessment: Cross-Omics as a Mediator
of Multi-Air Pollutants and Infant Birthweight. To
identify potential molecular mechanisms, representing cross-

omics relationships, that may mediate the relationship between
exposure to multiple air pollutants and birthweight, we ran
causal mediation analysis models. We estimated the natural
direct effect (NDE), natural indirect effect (NIE), and
controlled direct effects (CDEs), using BKMR-causal media-
tion analysis (BKMR-CMA) methods developed recently.52

The BKMR-CMA method allows for all possible interactions
and nonlinear effects of the co-exposures on the mediator and
the co-exposures and mediator on the outcome. Multi-
pollutants of the three air pollutant mixtures of PM2.5, PM10,
and NO2 were assessed as the exposures (A) for mediation
analyses, as these were measured for all participants, whereas
other mixture models were not explored due to small sample
sizes. The mediator considered was a cross-omics score (M)
derived from sPLSXY, of the metabolomic features that best
predicted proteins and vice versa. The outcome was birth-
weight z-scores (Y). All models were adjusted for the same set
of potential confounders listed above, considering that these
may also be potential confounders of the exposure−mediator
relationship and mediator−outcome relationship. Our media-
tion notation is the same as developed and described in ref 52.
Briefly, Yam denotes the counterfactual outcome Y if the
exposure level A was set to a and mediator level M was set to
m. Let Ma be the counterfactual mediator level M that would
have been observed if the exposure A was set to a. Accordingly,

Table 1. Demographic Characteristics of the Cohorta

Pooled cohort (n = 498)
ENVIRONAGE

(n = 199) INMA (n = 100) Rhea (n = 100) Piccolipiu ̀ (n = 99)

Maternal Age (years) 31 (18−43) 30 (18−43) 31 (24−41) 30 (20−42) 33 (20−43)
Maternal Education

primary school 63 (12) 29 (15) 18 (18) 8 (8) 8 (8)
secondary school 213 (43) 68 (34) 47 (47) 57 (57) 41 (41)
≥university degree 222 (45) 102 (51) 35 (35) 35 (35) 50 (51)

Paternal Education
primary school 105 (21) 39 (20) 28 (28) 22 (22) 16 (16)
secondary school 238 (48) 87 (43) 48 (48) 57 (57) 46 (47)
≥university degree 155 (31) 73 (37) 24 (24) 21 (21) 37 (37)

Maternal Active Smoking
nonsmoker 408 (82) 173 (87) 77 (77) 80 (80) 78 (79)
smoker 90 (18) 26 (13) 23 (23) 20 (20) 21 (21)

Maternal Passive Smoking Exposure
nonexposed 321 (64) 178 (90) 51 (51) 16 (16) 76 (77)
exposed 177 (36) 21 (10) 49 (49) 84 (84) 23 (23)
Maternal BMI 24 (16−47) 24 (16−42) 24 (17−36) 25 (18−47) 23 (17−34)
Paternal BMI 26 (18−60) 26 (18−60) 26 (18−35) 27 (19−40) 25 (19−38)

Season of Conception
January−March 122 (25) 45 (23) 17 (17) 28 (28) 32 (32)
April−June 129 (26) 44 (22) 27 (27) 24 (24) 34 (35)
July−September 161 (32) 79 (40) 31 (31) 29 (29) 22 (22)
October−December 86 (17) 31 (15) 25 (25) 19 (19) 11 (11)
Gestational Age (weeks) 39 (37−45) 39 (37−41) 40 (37−45) 38 (37−41) 40 (37−45)

Sex of Newborn
female 240 (48) 97 (49) 51 (51) 47 (47) 45 (46)
male 258 (52) 102 (51) 49 (49) 53 (53) 54 (54)

Parity
primiparas 130 (26) 0 55 (55) 29 (29) 46 (47)
multiparas: 2 births 239 (48) 109 (55) 37 (37) 48 (48) 45 (45)
multiparas: >2 births 129 (26) 90 (45) 8 (8) 23 (23) 8 (8)
Newborn Birthweight (g) 3309 (1920−4910) 3385 (1920−4530) 3298 (2010 −4400) 3259 (2370−4910) 3221 (2110−4440)
Newborn Birthweight (z-scores) 0.26 (−2.2−3.5) 0.47 (−2.0−2.7) 0.04 (−2.2−2.4) 0.39 (−2.1−3.5) −0.08 (−2.1−2.9)
aData are presented as mean and range for continuous variables and number (percentage) for categorical variables.
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YaMa* represents the counterfactual outcome Y if the exposure
level A was set to a and the mediator M was set to the level it
would have taken if the exposure level A was a*. We estimated
the NDE, NIE, and total effect (TE) for a change of the three-
pollutant mixture from a*, where the exposures set equal to
their 25th percentile, to a, where the exposures set is equal to
their 50th percentile. We also estimated the controlled direct
effect (CDE), where the mediator was held at the 25th, 50th,
and 75th percentiles. The CDE represents potential to alter the
mediator.
Sensitivity Analyses. Several sensitivity analyses were run

to assess the robustness of our findings. We consider that
multiple air pollutants measured in the present study represent
overlapping exposure assessments, and thus it may be
important to account for overlapping values of pollutants in
the mixture models. To address this for the pollutants of PM10
and PM2.5, where PM10 contains PM2.5, we estimate the
aerodynamic diameter between 2.5 and 10 μm (PMcoarse)
calculated as PM10−PM2.5. Additionally, NOx contains NO2,
and therefore in the only model containing NOx, we exclude
NO2. Thus, the sensitivity models for overlapping exposure
assessments are (1) a two-pollutant model of PMcoarse and
NO2; (2) a three-pollutant model of PMcoarse, NOx, and UFP;
and (3) a four-pollutant model of PMcoarse, NO2, OPAA, and
OPGSH for the direct effects of mixtures on birthweight.

■ RESULTS
Population Characteristics and Exposure to Multiple

Air Pollutants. Participants of the study were largely similar
among the cohorts with respect to demographic characteristics
(Table 1). The average maternal age was 31 (range: 18−43).
Several (45%) mothers had a university degree or higher, while
many (48%) fathers completed only secondary school.
Majority of women did not report smoking or exposure to
passive smoking during pregnancy, though this did differ by
cohort. The average birthweight was 3309 grams (g) (range:
1920−4910 g). Exposure to multiple air pollutants varied
slightly by geographic area of the cohort (Figure S2). All
pollutants were correlated, where most pairwise correlations
had r2 ≥ 0.5 (Figure S3). The average levels of exposure,
representing the year before birth, was 19 μg/m3 (range: 9−45
μg/m3) for PM2.5, 35 μg/m3 (range: 10−45 μg/m3) for PM10,
30 μg/m3 (range: 8−98 μg/m3) for NO2, 73 μg/m3 (range:
12−236 μg/m3) for NOx, 62 OP/m3 (range: −18−131 OP/
m3) for OPAA, 5 OP/m3 (range: 0.6−14 OP/m3) for OPGSH,
13393 n/cm3 (range: 1465−30 644 n/cm3) for UFP, and 15
μg/m3 (range: 1−35 μg/m3) for PMcoarse (Table S1). Ninety-
seven percent of pregnant women were exposed to levels of
PM2.5 above the WHO guideline, 63% of pregnant women
were exposed to levels of PM10 above the WHO guideline, and
26% of pregnant women were exposed to levels of NO2 above
the WHO guideline (Figure 1).
Effects of Prenatal Exposure to Different Mixtures of

Air Pollutants on Birthweight. To identify the effects of
mixtures of air pollutants on infant birthweight, we assessed
three different mixtures models. For our main models, all air
pollutants had a posterior inclusion probability equal to or
greater than 0.5 (Table S1). NO2 had a particularly high
probability of inclusion compared to the other components of
the mixtures, with an estimated posterior inclusion probability
of 0.78, 0.68, and 0.76 for the three-pollutant model of PM2.5,
PM10, and NO2; five-pollutant model of PM2.5, PM10, NO2
NOx, and UFP; and five-pollutant model of PM2.5, PM10, NO2,

OPAA, and OPGSH, respectively (Table S1). Based on the cross-
sectional univariate assessments between each air pollutant and
birthweight z-scores, there are potential nonlinear effects of the
air pollutants on birthweight (Figures S4 and S7). Additionally,
based on a cross-sectional univariate relationship between each
air pollutant and birthweight, where the other exposures are
fixed to their median value, there was a negative association
with birthweight z-scores with increasing levels of NO2 and
PM10 in the three-pollutant model (Figure S4A), with
increasing levels of NO2 and NOx for the five-pollutant
model of PM2.5, PM10, NO2, NOx, and UFP (Figure S4B), and
with increasing levels NO2 and OPAA for the five-pollutant
model of PM2.5, PM10, NO2, OPAA, and OPGSH (Figure S4C).
The overall effects of mixtures of air pollutants on infant
birthweight z-scores are presented in Figure 2. Estimates and

Figure 1. Pregnant women’s average annual exposure levels to PM2.5,
PM10, and NO2 presented as above and below the European Union
Ambient Air Quality Standards (red lines) and the World Health
Organization recommended guidelines (blue lines) for annual limits.
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95% CI are presented and represent the comparison of air-
pollutant-associated birthweight z-scores when all exposures
are at a particular quantile compared to the median value. For
the three-pollutant model, estimates where the CI did not
cross the null signify that birthweight z-scores are −0.020 when
air pollutants are set at the 0.55 quantile to −0.19 at the 0.75
quantile of exposure compared to their median value (Figure
2A). For the five-pollutant model, including NOx and UFP,
estimates where the CI did not cross the null signify that
birthweight z-scores are −0.024 when air pollutants are set at
the 0.55 quantile to −0.081 at the 0.65 quantile compared to
their median value (Figure 2B). For the five-pollutant model,
that includes OP, estimates where the CI did not cross the null
signify that birthweight z-scores are −0.21 when air pollutants
are set at the 0.70 quantile compared to their median value
(Figure 2C).

Cross-Omics Relationships. To assess the relationship of
targeted inflammatory proteins to metabolomic features, cross-
omics assessments were carried out. We aimed to select the
most influential proteins and the most affected metabolomic
features and vice versa using sPLS models with penalization of
the loading coefficients applied to proteins and metabolomic
features, respectively. When performing variable selection on
proteins, the calibrated sPLSX model included three
components, in which EGF, VEGF, IL-17, MPO, IP10, and
Perios were selected (Table 2). This model explained 28% of
the variance in proteins and 19% of the variance in
metabolomic features. The loading coefficients are presented
in Table S2. The calibrated sPLSY models for metabolomic
features included three components, and in those components,
4336 metabolomic features were excluded and 376 were
selected (Table 2). These three components of Y explained
15% of the variance in the metabolomic features and 42% of

Figure 2. Overall effects of mixtures of air pollutants on infant birthweight z-scores. Estimates represent the predicted birthweight z-scores based on
the overall effect of the mixture (estimates and 95% confidence intervals), comparing birthweight z-scores when all exposures are at a particular
quantile compared to the median value. Models adjusted for season of conception, sex, parity, maternal age, education of the mother and father,
active and passive smoking during pregnancy, and maternal and paternal BMI and cohort.

Table 2. Number of Components (N) and Explained Variance of X (Proteins) and Y (Metabolomic Features) from the Sparse
Partial Least-Squares Regression Models for Proteins and Metabolomic Features

sPLSX Proteins sPLSY Metabolomic Features sPLSXY Proteins and Metabolomic Features

Number of Components and Explained Variance

N X Y N X Y NX N Y X Y

Component 1 4 0.13 0.092 353 0.18 0.078 2 665 0.13 0.08
Component 2 3 0.083 0.068 23 0.16 0.051
Component 3 6 0.065 0.12 279 0.076 0.020
Total 13 0.28 0.19 655 42 0.15
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the variance of the proteins. Variable selection was also
performed on both X and Y. In the calibrated sPLSXY (Figure
S5), there was a single component included, where 14 proteins
were not selected, and IL-17 and MPO-5 had positive loading
coefficients of 0.49 and 0.87, respectively (Figure S6). Of the
4712 metabolomic features, 4047 were not selected, with the
remaining 665 metabolomic features having both positive and
negative loading coefficients (Figure S6). Through pathway
analysis of those 665 metabolomic features identified through
cross-omics (sPLSXY), we found enrichment for several
pathways. The top 10 were aspartate and asparagine
metabolism, arginine and proline metabolism, tyrosine
metabolism, urea cycle/amino group metabolism, glycerophos-
pholipid metabolism, fatty acid activation, tryptophan metab-
olism, arachidonic acid metabolism, vitamin A (retinol)
metabolism, and prostaglandin formation from arachidonate
(Table S3).
Mediation of Cross-Omics for Prenatal Exposure to

Mixtures of Air Pollutants and Birthweight. To determine
if the cross-omics score, representing the relationship between
metabolites and proteins, is a mediator on the causal path of air
pollution driven shifts in infant birthweight, we ran mediation
models for the three-pollutant mixture of PM2.5, PM10, and
NO2. Mediated effects for cross-omics scores were assessed
using the score from the sPLXY model (Figure 3). The total
effect (TE) of the three-pollutant model of PM2.5, PM10, and
NO2 was −0.37 (95% CI of −0.52, −0.098), corresponding to
the natural direct effect (NDE), the effect of the mixtures not
through ‘omics, of −0.33 (95% CI of −0.80, −0.099) and a
natural indirect effect (NIE), representing the effect that goes
through the path of the ‘omics, of −0.044 (95% CI of −0.20,
−0.0020) (Figure 3A). The controlled direct effect (CDE), of
setting the ‘omics to different levels, of the three-pollutant
model of PM2.5, PM10, and NO2 was estimated at three
different quantiles, the CDE at the 25th was −0.25 (95% CI of
−0.43, −0.12), at the 50th was −0.25 (95% CI of −0.39,
−0.15), and at the 75th was 0.12 (95% CI of −0.21, 0.42)
(Figure 3B).
Sensitivity Analysis. There was a negative association with

increasing levels of mixtures of air pollutants and birthweight z-
scores in all sensitivity analyses (Figures S7 and S8), and the
magnitude of effects was similar to our main analyses.

■ DISCUSSION

Most of the pregnant women in the present study, representing
four European countries, were exposed to levels of PM2.5 and
PM10 above the WHO guidelines, 97% and 63%, respectively.
While less (26%) were exposed to levels of NO2 above the

WHO guideline, exposure to NO2 was negatively associated
with birthweight. Additionally, exposure to mixtures of air
pollutants, from three different mixture pollutant models, was
negatively associated with infant birthweight. Our results
suggest that cross-omics scores, representing inflammatory
proteins and metabolomic features that are related to each
other, mediate the relationship between prenatal exposure to
air pollution and birthweight. These findings imply that
molecular shifts from prenatal exposure to mixtures of air
pollution may lie on the causal path to infant birthweight.
The effects of prenatal exposure to air pollution on

birthweight have been previously established, with varying
results. Most studies have examined a single pollutant at a time,
finding a negatvie association with birthweight with increasing
levels of exposure. For example, in a meta-analysis, the pooled
effect per 10 μg/m3 of prenatal expoure to ambient PM2.5 was
a reduction in birthweight by 23.4 g (95% CI: −45.5, −1.4).6
For comparison, in the present study, in the three-pollutant
mixture model of PM2.5, PM10, and NO2, we estimated an
association of −0.21 z-score, which could lead to an
approximate 96 g decrease in birthweight, comparing the 75
percentile to the median level of exposure to the air pollutant
mixture. This signifies a substantial decrease in birthweight,
which could lead to early life and later in life health effects.
Only a few studies have investigated the effects of mixtures on
birthweight,10−14 and fewer have investigated the cumulative/
interactive effects of the different components of air pollution.
A previous study using Bayesian mixture models found that
mixtures of NO2, NO, and PM2.5 concentrations (averaged
over census block groups) was associated with an increase in
log odds of low birthweight.53 Importantly, these air-pollution-
related shifts in birthweight could lead to increases in neonatal
morbidity and mortality, but are also a main risk factor for
developmental problems such as asthma and obesity.8 These
results signify the need to assess multipollutant exposures, as
exposure to combinations of air pollutants may lead to greater
shifts in infant birthweight that may be underrepresented by
single-pollutant assessments.
We identified cross-omics relationships between inflamma-

tory proteins and the blood metabolome, indicating an
association between two different ‘omics measurements. Our
study is the first to assess cross-omics of the metabolome and
targeted inflammatory proteins representing a targeted
proteome in utero, and to perform mediation analyses,
representing a potential causal link for molecular mechanisms
underlying air-pollution-associated shifts in birthweight.
Results from the sparse partial least-squares regression model
selecting both proteins and metabolomic features suggest an

Figure 3. Mediated effects of the three-pollutant mixture of PM2.5 and PM10 and NO2 on birthweight z-scores for cross-omics scores for
metabolomic features that best predicted proteins. Estimates (Figure 3A) represent the total effect (TE), the natural indirect effect (NIE).
Estimates (Figure 3B) represent the controlled direct effects of the mediator set to their 75th percentile (CDE75), 50th percentile (CDE50), and
25th percentile (CDE25).
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immune response of decreased levels of IL-17 and MPO.
Interestingly, IL-17 was selected as an important protein in two
different assessments. This protein was identified in cross-
omics scores of proteins to metabolomic features and was
represented in the mediation models, indicating its role in air-
pollution-associated shifts in birthweight. EGF was selected in
the sPLSX model. These findings suggest IL-17 and EGF as
important inflammatory responses in association with prenatal
air pollution. We have previously identified IL-17 in association
with air pollution and cardiovascular disease in adults.54

However, previous studies have identified other inflammatory
responses from air pollution that were not identified through
our cross-omics assessments. For example, PM2.5 exposure has
been associated with increased C-reactive protein concen-
trations in early pregnancy, which is indicatative that
inflammation that could impact gestation.55 The targeted
inflammatory protein responses identified in the present study
play an important role in air-pollution-associated shifts in
birthweight and will need to be considered in future studies.
We identified 665 metabolomic features that mediate air-

pollution-associated shifts in birthweight. Metabolomic
signatures have been associated with air pollution in a targeted
assessment of oxylipins from umbilical cord blood plasma33

and lung lavage fluid.32 The metabolome associated with
birthweight has been described in a previous study from
EXPOSOMICS.47 Of the 665 metabolomic features selected
from the cross-omics assessment in the present study, seven
were associated with birthweight in a previous study from
EXPOSOMICS, and included the following lipids: diacylgly-
cerol (C34:2), diacylglycerol (C36:3), lysoPC (C20:2),
lysoPC (C22:5), and retinol, and two unknown metabolomic
features.47 Pathway analysis of the 665 metabolomic features
identified through cross-omics indicates enrichment for several
metabolomic features that are involved in fetal development
and growth. In particular, arginine metabolism plays an
important role in reproduction, fetal and postnatal develop-
ment, wound healing, immune function, and tissue integrity, as
well as prevention and treatment of endothelial dysfunction.56

Additionally, concentrations of arginine in plasma are reduced
in response to infection or inflammation.57 Tyrosine
metabolism and other amino acid metabolism have been
previously associated with fetal growth.58 Interestingly,
tyrosine metabolism has previously been associated with
exposure to air pollution in adults in two separate studies,59,60

indicating a potential important pathway targeted by air
pollutants.
This study is not without limitations. We measured exposure

to air pollution only at the participants’ residence, and at one
time during pregnancy, which may underestimate their
exposure and miss critical windows of gestation. Given that
there are many inconsistencies in findings from studies
assessing critical and/or sensitive exposure windows (e.g.,
trimester-specific exposures),7 the determination of the most
susceptible exposure periods, in particular for mixtures, needs
further investigation. Additionally, our mixtures assessments
were based on the available combinations of air pollutants
previously measured in each cohort, limiting the sample sizes
for estimating the direct effects of all mixtures on birthweight,
and only facilitating the application of a mediation model for
the mixture of PM10, PM2.5, and NO2. This also limited our
ability to assess potential effect modifiers. The OPGSH
estimates were from weak performing models and may not
be as reliable as the other estimates, and therefore results of

models including this pollutant should be interpreted with
caution.54 We were limited in our assessment of potential
effect modifiers and/or confounders, including known factors
such as nutrition,19 joint effects of air pollutants and social
determinants, or preexisting chronic health conditions, such as
maternal stress.61 We did not have information on pregnancy-
related complications such as gestational diabetes or hyper-
tension that could be potential confounders or that are more
likely to be on the causal path, though the prevalence of these
complications is likely low. If such complications are on the
causal path, they would represent other mediating mechanisms
not accounted for in our assessments and should be considered
for future studies. Furthermore, we cannot completely rule out
reverse causality of the outcome with the ‘omics signatures as
the ‘omics were collected at birth. Unfortunately, this is a
prominent issue that continues to affect perinatal molecular
epidemiological studies, and future studies will need to
consider alternative tissues that can capture molecular profiles
across gestation, such as amniotic fluid (though this can be
considered an invasive process). While we had a compre-
hensive ‘omics assessment, representing more than one ‘omic,
other regulators of transcription factors, such as epigenetics,
will need to be considered in future studies. Additionally, we
measured a limited number of targeted inflammatory proteins,
and other studies have identified other inflammatory proteins,
not measured in the present study, associated with prenatal
exposure to air pollution.62 Future studies should consider a
larger proteomic profile of inflammatory and noninflammatory
proteins, even though inflammation has been highlighted as a
key pathway for air-pollution-associated shifts in birth-
weight.21,22 Finally, we only consider cross-omics scores in
our mediation model, whereas other ‘omics not selected from
our sPLS models may mediate the relationship between air
pollutants and birthweight. However, our aim was to target
cross-omics to better represent correlation (potentially at the
biological level) of one ‘omic to another; therefore, the cross-
omics scores were our primary focus in the present study.
The strengths of this study include the representation of

multiple birth cohorts across Europe, increasing the general-
izability of our findings to other European and similar
populations, unique exposure assessments for multiple air
pollutants, and the combination of multi-omic methodologies
along with causal mediation assessments. Our study found
shifts in birthweight with mixtures, not commonly assessed,
such as oxidative potential and UFP. According to a recent
review,1 the most commonly studied ambient air pollutants in
association with birth outcomes are PM, NO2, ozone, and
carbon monoxide. A strength of our exposure assessment
approach is in the application of land use regression models,
representing personal exposure. We applied several advanced
techniques for our statistical approach that address previous
limitations, including the assessment of mixtures allowing for
their interactions and nonlinear relationships, the functional
assessment of cross-omics in terms of two ‘omics to one
another, and their causal mediating role in air-pollution-
associated birthweight. Multipollutant modeling may also
reduce co-exposure confounding.63 Cross-omics may better
characterize genes in the context of the molecular pathophysi-
ology of the disease and its interacting genes and pathways.
In conclusion, we find that shifts in birthweight are

associated with prenatal exposure to mixtures of air pollution
that are mediated by cross-omics signatures of targeted
inflammatory proteins and metabolomic features, highlighting
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the role of potential biological pathways and supporting the
causal role of air pollution’s effect on birthweight. Additionally,
our study demonstrates the complexities in understanding the
biological intricacies of environmental exposures and asso-
ciated health effects, and why it is crucial that we begin to take
an exposome approach in the field of environmental
epidemiology to fully capture multiple exposures and
mediating molecular mechanisms. By investigating molecular
mechanisms, we can further support associations between
exposure to air pollutants and adverse health. Our findings
support that measures should be taken to reduce prenatal
exposure to air pollutants.
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