University of Leicester
Browse
Progressive Motor Neuron Pathology and the Role of Astrocytes in a Human Stem Cell Model of VCP-Related ALS.pdf (3.49 MB)

Progressive Motor Neuron Pathology and the Role of Astrocytes in a Human Stem Cell Model of VCP-Related ALS.

Download (3.49 MB)
journal contribution
posted on 2018-05-04, 08:44 authored by C. E. Hall, Z. Yao, M. Choi, G. E. Tyzack, A. Serio, R. Luisier, J. Harley, E. Preza, C. Arber, S. J. Crisp, P. M. D. Watson, D. M. Kullmann, A. Y. Abramov, S. Wray, R. Burley, Samantha H.Y. Loh, L. Miguel Martins, M. M. Stevens, N .M. Luscombe, C. R. Sibley, A. Lakatos, J. Ule, S. Gandhi, R. Patani
Motor neurons (MNs) and astrocytes (ACs) are implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but their interaction and the sequence of molecular events leading to MN death remain unresolved. Here, we optimized directed differentiation of induced pluripotent stem cells (iPSCs) into highly enriched (> 85%) functional populations of spinal cord MNs and ACs. We identify significantly increased cytoplasmic TDP-43 and ER stress as primary pathogenic events in patient-specific valosin-containing protein (VCP)-mutant MNs, with secondary mitochondrial dysfunction and oxidative stress. Cumulatively, these cellular stresses result in synaptic pathology and cell death in VCP-mutant MNs. We additionally identify a cell-autonomous VCP-mutant AC survival phenotype, which is not attributable to the same molecular pathology occurring in VCP-mutant MNs. Finally, through iterative co-culture experiments, we uncover non-cell-autonomous effects of VCP-mutant ACs on both control and mutant MNs. This work elucidates molecular events and cellular interplay that could guide future therapeutic strategies in ALS.

History

Citation

Cell Reports, 19 (9), pp. 1739-1749

Author affiliation

/Organisation/COLLEGE OF LIFE SCIENCES/Biological Sciences/Molecular & Cell Biology

Version

  • VoR (Version of Record)

Published in

Cell Reports

Publisher

Elsevier

eissn

2211-1247

Acceptance date

2017-05-05

Copyright date

2017

Available date

2018-05-04

Publisher version

https://www.sciencedirect.com/science/article/pii/S2211124717306496?via=ihub#!

Language

en