University of Leicester
Browse
2015irwin_spex.pdf (1.18 MB)

Reanalysis of Uranus' cloud scattering properties from IRTF/SpeX observations using a self-consistent scattering cloud retrieval scheme

Download (1.18 MB)
journal contribution
posted on 2016-03-02, 09:34 authored by P. G. J. Irwin, D. S. Tice, Leigh Nicholas Fletcher, J. K. Barstow, N. A. Teanby, G. S. Orton, G. R. Davis
We have developed a new retrieval approach to modelling near-infrared spectra of Uranus that represents a significant improvement over previous modelling methods. We reanalysed IRTF/SpeX observations of Uranus observed in 2009 covering the wavelength range 0.8–1.8 μm and reported by Tice et al. (Tice, D.S., Irwin, P.G.J., Fletcher, L.N., Teanby, N.A., Hurley, J., Orton, G.S., Davis, G.R. [2013]. Icarus 223, 684–698). By retrieving the imaginary refractive index spectra of cloud particles we are able to consistently define the real part of the refractive index spectra, through a Kramers–Kronig analysis, and thus determine self-consistent extinction cross-section, single-scattering and phase-function spectra for the clouds and hazes in Uranus’ atmosphere. We tested two different cloud-modelling schemes used in conjunction with the temperature/methane profile of Baines et al. (Baines, K.H., Mickelson, M.E., Larson, L.E., Ferguson, D.W. [1995]. Icarus 114, 328–340), a reanalysis of the Voyager-2 radio-occultation observations performed by Sromovsky, Fry and Kim (Sromovsky, L.A., Fry, P.M., Kim, J.H. [2011]. Icarus 215, 292–312), and a recent determination from Spitzer (Orton, G.S., Fletcher, L.N., Moses, J.I., Mainzer, A.K., Hines, D., Hammel, H.B., Martin-Torres, F.J., Burgdorf, M., Merlet, C., Line, M.R. [2014]. Icarus 243, 494–513). We find that both cloud-modelling schemes represent the observed centre-of-disc spectrum of Uranus well, and both require similar cloud scattering properties of the main cloud residing at ∼2 bars. However, a modified version of the Sromovsky, Fry and Kim (2011) model, with revised spectral properties of the lowest cloud layer, fits slightly better at shorter wavelengths and is more consistent with the expected vertical position of Uranus’ methane cloud. We find that the bulk of the reflected radiance from Uranus arises from a thick cloud at approximately the 2 bar level, composed of particles that are significantly more absorbing at wavelengths λ > 1.0 μm than they are at shorter wavelengths λ < 1.0 μm. This spectral information provides a possible constraint on the identity of the main particle type, although we find that the scattering properties required are not consistent with any of the available laboratory data for pure NH3, NH4SH, or CH4 ice (all suspected of condensing in the upper troposphere). It is possible that the observed clouds are mixtures of tropospheric condensate mixed with photochemical products diffusing down from above, which masks their pure scattering features. Because there is no available laboratory data for pure H2S or PH3 ice (both of which might be present as well), they cannot be excluded as the cloud-forming species. We note, however, that their absorptive properties would have to be two orders of magnitude greater than the other measured ices at wavelengths greater than 1 μm to be consistent with our retrieval, which suggests that mixing with photochemical products may still be important.

History

Citation

Icarus, 2015, 250, pp. 462-476 (15)

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Physics and Astronomy

Version

  • AM (Accepted Manuscript)

Published in

Icarus

Publisher

Elsevier for Academic Press Inc.

issn

0019-1035

Acceptance date

2014-12-15

Copyright date

2014

Available date

2016-12-29

Publisher version

http://www.sciencedirect.com/science/article/pii/S0019103514007003

Notes

The file associated with this record is under a 24-month embargo from publication in accordance with the publisher's self-archiving policy. The full text may be available through the publisher links provided above.

Language

en