posted on 2019-10-24, 08:34authored byJiahao Gao, Dongzhi Zhu, Wenjuan Zhang, Gregory A. Solan, Yanping Ma, Wen-Hua Sun
High performance biodegradable polymers (e.g., aliphatic polyesters) that can display properties that rival polyolefins are seen as future high demand materials for a variety of applications. Importantly, these types of polymers can be accessed by the ring opening polymerization (ROP) of monomers that can, in some cases, be derived from cheap biorenewable resources highlighting the sustainability of the process. Carefully designed metal complexes that can act as catalysts for such transformations have emerged as useful tools to achieve this goal. This review is concerned with recent progress in the use of well-defined metal complexes based on group 1, 2 and 13 metals to mediate the formation of aliphatic polyesters with a focus on the role played by the auxiliary ligand on influencing catalytic efficiency, controllability, molecular weight as well as stereoselectivity. More specifically, we report on developments in the design, synthesis and structure of such main group metal species supported by various multidentate ligands including bidentate, tridentate and tetradentate families bearing nitrogen, oxygen, sulfur, selenium or phosphorus donor atoms and their catalytic applications in the ROP of cyclic esters. In addition, the fundamental coordination chemistry of the metal complexes is discussed alongside variations in catalytic performance.
Funding
This work was supported by the National Natural Science Foundation of China (No. 51973005 and 21871275). GAS thanks the Chinese Academy of Sciences for a Visiting Fellowship.
History
Citation
Inorganic chemistry frontiers, 2019, 6 (10), pp. 2619-2652 (34)
Author affiliation
/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Chemistry
The file associated with this record is under embargo until 12 months after publication, in accordance with the publisher's self-archiving policy. The full text may be available through the publisher links provided above.