University of Leicester
Browse
'.pdf (1.48 MB)

Recovery of yttrium and europium from spent fluorescent lamps using pure levulinic acid and the deep eutectic solvent levulinic acid-choline chloride

Download (1.48 MB)
journal contribution
posted on 2021-06-18, 09:18 authored by IM Pateli, AP Abbott, K Binnemans, N Rodriguez Rodriguez
A solvometallurgical approach for the recovery of rare-earth elements from lamp phosphor waste was developed. The solubility of individual phosphors in different deep-eutectic solvents (DESs) was measured. The DES levulinic acid-choline chloride (xChCl = 0.33) showed high solubility of the YOX phosphor (Y2O3:Eu3+) and low solubility of the HALO phosphor (Sr,Ca)10(PO4)(Cl,F)2:Sb3+,Mn2+, which does not contain any rare-earth element. This DES was selected for further investigation. When the DES was compared to pure levulinic acid, very similar leaching behaviour was observed, showing that the proton activity is more important than the chloride as a metal ligand. The leaching of YOX and HALO using levulinic acid-choline chloride (xChCl = 0.33) or pure levulinic acid was optimised in terms of water content, temperature and leaching time. The optimised parameters were validated in a synthetic mixture of phosphors and in real lamp phosphor waste. The co-dissolution of HALO is higher in the real waste than in the synthetic mixture. The real waste was also leached with an aqueous solution of hydrochloric acid, which was non-selective against dissolution of YOX, and with the functionalised ionic liquid betainium bis(trifluoromethylsulfonyl)imide. The ionic liquid gave a similar selectivity as levulinic acid, but is much more expensive. The recovery of the metals from the pregnant leach solution was tested via precipitation with oxalic acid and solvent extraction. Oxalic acid precipitation was not suitable for the DES system. The metals could be extracted via solvent extraction with the acidic extractant bis(2-ethylhexyl)phosphoric acid (D2EHPA) and stripped by an aqueous hydrochloric acid solution. Pure levulinic acid was found to be more suitable than the corresponding ChCl-based DES for the selective recovery of YOX.

Funding

Nerea Rodriguez Rodriguez acknowledges the financial support from the Research Foundation-Flanders (FWO, Grant no. 12X5119N, postdoctoral fellowship). This research received funding from the European Commission's H2020 – Marie Sklodowska Curie Actions (MSCA) – Innovative Training Networks within the SOCRATES project under the grant agreement no. 721385 (Project website: http://etn-socrates.eu).

History

Citation

RSC Adv., 2020,10, 28879-28890

Version

  • VoR (Version of Record)

Published in

RSC Advances

Volume

10

Issue

48

Pagination

28879 - 28890

Publisher

Royal Society of Chemistry (RSC)

eissn

2046-2069

Acceptance date

2020-07-20

Copyright date

2020

Available date

2021-06-18

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC