University of Leicester
Browse
1/1
2 files

Rgg-Shp regulators are important for pneumococcal colonization and invasion through their effect on mannose utilization and capsule synthesis

journal contribution
posted on 2018-05-11, 13:36 authored by Xiangyun Zhi, Iman Tajer Abdullah, Ozcan Gazioglu, I. Manzoor, S. Shafeeq, O. P. Kuipers, N. L. Hiller, Peter W. Andrew, Hasan Yesilkaya
Microbes communicate with each other by using quorum sensing (QS) systems and modulate their collective 'behavior' for in-host colonization and virulence, biofilm formation, and environmental adaptation. The recent increase in genome data availability reveals the presence of several putative QS sensing circuits in microbial pathogens, but many of these have not been functionally characterized yet, despite their possible utility as drug targets. To increase the repertoire of functionally characterized QS systems in bacteria, we studied Rgg144/Shp144 and Rgg939/Shp939, two putative QS systems in the important human pathogen Streptococcus pneumoniae. We find that both of these QS circuits are induced by short hydrophobic peptides (Shp) upon sensing sugars found in the respiratory tract, such as galactose and mannose. Microarray analyses using cultures grown on mannose and galactose revealed that the expression of a large number of genes is controlled by these QS systems, especially those encoding for essential physiological functions and virulence-related genes such as the capsular locus. Moreover, the array data revealed evidence for cross-talk between these systems. Finally, these Rgg systems play a key role in colonization and virulence, as deletion mutants of these QS systems are attenuated in the mouse models of colonization and pneumonia.

History

Citation

Scientific Reports, 2018, 8:6369

Author affiliation

/Organisation/COLLEGE OF LIFE SCIENCES/School of Medicine/Department of Infection, Immunity and Inflammation

Version

  • VoR (Version of Record)

Published in

Scientific Reports

Publisher

Nature Publishing Group

issn

2045-2322

eissn

2045-2322

Acceptance date

2018-04-05

Copyright date

2018

Available date

2018-05-11

Publisher version

http://www.nature.com/articles/s41598-018-24910-1

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC