University of Leicester
Browse

Robust Control Applications

Download (721.3 kB)
journal contribution
posted on 2009-06-29, 14:31 authored by Ian Postlethwaite, Matthew C. Turner, Guido Herrmann
This paper (first presented as a plenary lecture at the Fifth IFAC Symposium on Robust Control Design, Toulouse, July 2006) demonstrates the practical importance of robust control theory by describing its application to two non-trivial practical control problems. Part 1 considers helicopter control and Part 2 addresses saturation problems in high-performance head-positioning servo systems in high-density hard-disk drives. In Part 1, we present the design and flight test of a new batch of H∞ controllers for the Bell 205 helicopter. At the heart of each controller is an H∞ loop-shaping controller, augmented with a hand-tuned reference filter to improve tracking performance and to reduce a perceived phase lag which pilots had complained of previously. Flight testing revealed that, with such an architecture, it was relatively easy to get Level 1 handling qualities ratings in low aggression manoeuvres. Further fine tuning resulted in Level 1 qualities for high aggression manoeuvres and one controller performed to Level 1 standard in all manoeuvres tested. In Part 2, we consider how robust control techniques can be used to design anti-windup compensators to counter performance and stability problems associated with saturating actuators in state-of-the-art hard-disk drive servo systems. A promising two-stage approach is given and illustrated with experimental results.

History

Citation

Annual Reviews in Control, 2007, 31 (1), pp. 27-39.

Published in

Annual Reviews in Control

Publisher

Elsevier

issn

1367-5788

Copyright date

2007

Available date

2009-06-29

Publisher version

http://www.sciencedirect.com/science/article/pii/S1367578807000041

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC