University of Leicester
Browse

Seasonal observations of OH and HO[subscript 2] in the remote tropical marine boundary layer

Download (5.32 MB)
journal contribution
posted on 2013-10-15, 13:37 authored by S. Vaughan, T. Ingham, L.K. Whalley, D. Stone, M.J. Evans, K.A. Read, J.D. Lee, S.J. Moller, L.J. Carpenter, A.C Lewis, Zoe L. Fleming, D.E. Heard
Field measurements of the hydroxyl radical, OH, are crucial for our understanding of tropospheric chemistry. However, observations of this key atmospheric species in the tropical marine boundary layer, where the warm, humid conditions and high solar irradiance lend themselves favourably to production, are sparse. The Seasonal Oxidant Study at the Cape Verde Atmospheric Observatory in 2009 allowed, for the first time, seasonal measurements of both OH and HO[subscript 2] in a clean (i.e. low NO[subscript x]), tropical marine environment. It was found that concentrations of OH and HO[subscript 2] were typically higher in the summer months (June, September), with maximum daytime concentrations of ~9 × 10[superscript 6] and 4 × 10[superscript 8] molecule cm[superscript −3], respectively – almost double the values in winter (late February, early March). HO[subscript 2] was observed to persist at ~10[superscript 7] molecule cm[superscript −3] through the night, but there was no strong evidence of nighttime OH, consistent with previous measurements at the site in 2007. HO[subscript 2] was shown to have excellent correlations (R[superscript 2] ~ 0.90) with both the photolysis rate of ozone, J(O[superscript 1]D), and the primary production rate of OH, P(OH), from the reaction of O([superscript 1]D) with water vapour. The analogous relations of OH were not so strong (R[superscript 2] ~ 0.6), but the coefficients of the linear correlation with J(O[superscript 1]D) in this study were close to those yielded from previous works in this region, suggesting that the chemical regimes have similar impacts on the concentration of OH. Analysis of the variance of OH and HO[subscript 2] across the Seasonal Oxidant Study suggested that ~70% of the total variance could be explained by diurnal behaviour, with ~30% of the total variance being due to changes in air mass.

History

Citation

Atmospheric Chemistry and Physics, 2012, 12 (4), 2149-2172

Version

  • VoR (Version of Record)

Published in

Atmospheric Chemistry and Physics

Publisher

Copernicus GmbH (Copernicus Publications) on behalf of the European Geosciences Union (EGU).

issn

1680-7316

eissn

1680-7324

Copyright date

2012

Available date

2013-10-15

Publisher version

http://www.atmos-chem-phys.net/12/2149/2012/acp-12-2149-2012.html

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC