posted on 2019-09-24, 13:44authored byFei Gao, Fei Ma, Jun Wang, Jinping Sun, Erfu Yang, Huiyu Zhou
As an important model of deep learning, semi-supervised learning models are based on Generative Adversarial Nets (GANs) and have achieved a competitive performance on standard optical images. However, the training of GANs becomes unstable when they are applied to SAR images, which reduces the feature extraction capability of the discriminator in GANs. This paper presents a new semi-supervised GANs with Multiple generators and a classifier (MCGAN). This model improves the stability of training for SAR images by employing multiple generators. A multi-classifier is introduced to the new GANs to utilize the labeled images during the training of the GANs, which shares the low level layers with the discriminator. Then, the layers of the trained discriminator and the classifier construct the recognition network for SAR images after having been finely tuned using a small number of the labeled images. Experiments on the Moving and Stationary Target Acquisition and Recognition (MSTAR) databases show that the proposed recognition network achieves a better and more stable recognition performance than several traditional semi-supervised methods as well as other GANs-based semi-supervised methods.
Funding
This research was funded by the National Natural Science Foundation of China, grant number 61771027,
61071139, 61471019, 61501011, and 61171122. E. Yang is supported in part under the RSE-NNSFC Joint Project
(2017-2019), grant number 6161101383 with China University of Petroleum (Huadong). H. Zhou is supported
by UK EPSRC, grant number EP/N508664/1, EP/R007187/1 and EP/N011074/1, and Royal Society-Newton
Advanced Fellowship, grant number NA160342.
History
Citation
Sensors, 2018, 18(8), 2706
Author affiliation
/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Informatics