posted on 2019-04-11, 09:26authored byJS Minhas, RB Panerai, TG Robinson
OBJECTIVE: Cerebral blood flow (CBF) is influenced by changes in arterial CO2 (PaCO2). Recently, cerebral haemodynamic parameters were demonstrated to follow a four parameter logistic curve offering simultaneous assessment of dCA and CO2 vasoreactivity. However, the effects of sex on cerebral haemodynamics have yet to be described over a wide range of PaCO2. APPROACH: CBF velocity (CBFV, transcranial Doppler), blood pressure (BP, Finometer) and end-tidal CO2 (EtCO2, capnography) were measured in healthy volunteers at baseline, and in response to hypo- (-5 mmHg and -10 mmHg below baseline) and hypercapnia (5% and 8% CO2), applied in random order. MAIN RESULTS: Forty-five subjects (19 male, 26 female, mean age 37.5 years) showed significant differences between males and females in CBFV (50.9 ± 10.4 versus 61.5 ± 12.3 cm · s-1, p = 0.004), EtCO2 (39.2 ± 2.8 versus 36.9 ± 3.0 mmHg, p = 0.005), RAP (1.16 ± 0.23 versus 0.94 ± 0.40 mmHg cm · s-1, p = 0.005) and systolic BP (125.2 ± 8.0 versus 114.6 ± 12.4 mmHg, p = 0.0372), respectively. Significant differences between sexes were observed in the four logistic parameters: y min, y max, k (exponential coefficient) and x (EtCO2 level) across the haemodynamic variables. Significant differences included the CBFV-EtCO2 and ARI-EtCO2 relationship; ARImin (p = 0.036) and CBFVmax (p = 0.001), respectively. Furthermore, significant differences were observed for both CrCPmin (p = 0.045) and CrCPmax (p = 0.005) and RAPmin (p < 0.001) and RAPmax (p < 0.001). SIGNIFICANCE: This is the first study to examine sex individually within the context of a multi-level CO2 protocol. The demonstration that the logistic curve parameters are influenced by sex, highlights the need to take into account sex differences between participants in both physiological and clinical studies.
Funding
JSM is Dunhill Medical Trust Clinical Research Training Fellow (RTF97/0117) at the Department of Cardiovascular Sciences, University of Leicester. TGR is an NIHR Senior Investigator. We thank the subjects for their willingness to participate. This work falls under the portfolio of research conducted within the NIHR Leicester Biomedical Research Centre.
History
Citation
Physiol Meas, 2018, 39 (10), pp. 105009-?
Author affiliation
/Organisation/COLLEGE OF LIFE SCIENCES/School of Medicine/Department of Cardiovascular Sciences
The file associated with this record is under embargo until 12 months after publication, in accordance with the publisher's self-archiving policy. The full text may be available through the publisher links provided above.