University of Leicester
Browse

Simulations of star formation in a gaseous disc around Sgr A* - A failed active galactic nucleus

Download (1.2 MB)
journal contribution
posted on 2012-10-24, 09:06 authored by S. Nayakshin, J. Cuadra, V. Springel
We numerically model fragmentation of a gravitationally unstable gaseous disc under conditions that may be appropriate for the formation of the young massive stars observed in the central parsec of our Galaxy. In this study, we adopt a simple prescription with a locally constant cooling time. We find that, for cooling times just short enough to induce disc fragmentation, stars form with a top-heavy initial mass function (IMF), as observed in the Galactic Centre (GC). For shorter cooling times, the disc fragments much more vigorously, leading to lower average stellar masses. Thermal feedback associated with gas accretion on to protostars slows down disc fragmentation, as predicted by some analytical models. We also simulate the fragmentation of a gas stream on an eccentric orbit in a combined Sgr A* plus stellar cusp gravitational potential. The stream precesses, self-collides and forms stars with a top-heavy IMF. None of our models produces large enough comoving groups of stars that could account for the observed ‘ministar cluster’ IRS13E in the GC. In all of the gravitationally unstable disc models that we explored, star formation takes place too fast to allow any gas accretion on to the central supermassive black hole. While this can help to explain the quiescence of ‘failed active galactic nucleus’ such as Sgr A*, it poses a challenge for understanding the high gas accretion rates inferred for many quasars.

History

Citation

Monthly Notices of the Royal Astronomical Society, 2007, 379 (1), pp. 21-33

Version

  • VoR (Version of Record)

Published in

Monthly Notices of the Royal Astronomical Society

Publisher

Royal Astronomical Society (RAS)

issn

0035-8711

eissn

1365-2966

Copyright date

2007

Available date

2012-10-24

Publisher version

http://mnras.oxfordjournals.org/content/379/1/21

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC