posted on 2017-04-19, 15:45authored byAlex Clark, Lorenzo Sadun
Following an earlier similar conjecture of Kellendonk and Putnam, Giordano, Putnam, and Skau conjectured that all minimal, free ZdZd actions on Cantor sets admit “small cocycles.” These represent classes in H1H1 that are mapped to small vectors in RdRd by the Ruelle–Sullivan (RS) map. We show that there exist Z2Z2 actions where no such small cocycles exist, and where the image of H1H1 under RS is Z2Z2 . Our methods involve tiling spaces and shape deformations, and along the way we prove a relation between the image of RS and the set of “virtual eigenvalues,” i.e., elements of RdRd that become topological eigenvalues of the tiling flow after an arbitrarily small change in the shapes and sizes of the tiles.
History
Citation
Annales Henri Poincaré, 2017, doi:10.1007/s00023-017-0579-9
Author affiliation
/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Mathematics