posted on 2009-10-27, 14:53authored byD.R. Smith, Jörg Kaduk, Heiko Balzter, M.J. Wooster, G.N. Mottram, T.J. Lynham, J. Studens, J. Curry, G. Hartley, B.J. Stocks
To fully understand the carbon (C) cycle impacts of forest fires, both C emissions during the fire and post-disturbance fluxes need to be considered. The latter are dominated by soil respiration (Rs), which is still subject to large uncertainties. This research investigates Rs in a boreal jack pine fire scar chronosequence at Sharpsand Creek, Ontario, Canada. During two field campaigns in 2006 and 2007, Rs was measured in a chronosequence of fire scars aged between 0 and 59 years since the last fire. Mean Rs per fire scar was adjusted for soil temperature (Ts) and soil moisture (Ms) (denoted RST,M). RST,M ranged from 0.56 μmol CO2/m2/s (32 years post fire) to 8.18 μmol CO2/m2/s (58 years post fire). The coefficient of variation (CV) of RST,M ranged from 20% (16 years post fire) to 56% (58 years post fire). Across the field site, there was a statistically highly significant exponential relationship between Rs adjusted for soil organic carbon (Cs) and Ts (P<0.00001; Q10=2.21) but no effect of Ms on Rs adjusted for Cs and Ts for the range 0.21 to 0.77 volumetric Ms (P=0.702). RST,M decreased significantly (P=0.030) after fire (4 to 8 days post fire) in mature forest, though no significant (P>0.1) difference could be detected between recently burned (4 to 8 days post fire) and unburned young forest. There were significant differences in RST,M between recently burned (4 to 8 days post fire) scar age categories that differed in their burn history, with between-fire intervals of 32 vs. 16 years (P<0.001) and 32 vs 59 years (P=0.044). There was a highly significant exponential increase in RST,M with time since fire (r2=0.999; P=0.006) for the chronosequence 0, 16 and 59 years post fire, and for all these age categories, RST,M was significantly different from one another (P<0.05). The results of this study contribute to a better quantitative understanding of Rs in boreal jack pine fire scars and will facilitate improvements in C cycle modelling. Further work is needed in quantifying autotrophic and heterotrophic contributions to Rs in jack pine systems; in monitoring Rs for extended time periods after fire; and in measuring different fire-prone forest types.
History
Citation
Biogeosciences Discussions, 2009, 6 (5), pp. 8725-8773.
Published in
Biogeosciences Discussions
Publisher
Copernicus Publications on behalf of the European Geosciences Union
This paper was published as Biogeosciences Discussions, 2009, 6 (5), pp. 8725-8773. It is available from http://www.biogeosciences-discuss.net/6/8725/2009/bgd-6-8725-2009.html