University of Leicester
Browse

Soil surface CO[subscript 2] flux increases with successional time in a fire scar chronosequence of Canadian boreal jack pine forest

Download (306.86 kB)
journal contribution
posted on 2010-05-11, 15:11 authored by D.R. Smith, Jörg Kaduk, Heiko Balzter, M.J. Wooster, G.N. Mottram, G. Hartley, T.J. Lynham, J. Studens, J. Curry, B.J. Stocks
To fully understand the carbon (C) cycle impacts of forest fires, both C emissions during the fire and post-disturbance fluxes need to be considered. The latter are dominated by soil surface CO[subscript 2] flux (F[subscript s]), which is still subject to large uncertainties. Fire is generally regarded as the most important factor influencing succession in the boreal forest biome and fire dependant species such as jack pine are widespread. In May 2007, we took concurrent F[subscript s] and soil temperature (T[subscript s]) measurements in boreal jack pine fire scars aged between 0 and 59 years since fire. To allow comparisons between scars, we adjusted F[subscript s] for T[subscript s] (F[subscript s,superscript T]) using a Q[subscript 10] of 2. Mean F[subscript s,superscript T] ranged from 0.56 (± 0.30 sd) to 1.94 (± 0.74 sd) μmol CO[subscript 2] m[superscript −2] s[superscript −1]. Our results indicate a difference in mean F[subscript s,superscript T] between recently burned (4 to 8 days post fire) and non-burned mature (59 years since fire) forest (P < 0.001), though no difference was detected between recently burned (4 to 8 days post fire) and non-burned young (16 years since fire) forest (P = 0.785). There was a difference in mean F[subscript s,superscript T] between previously young (16 years since fire) and intermediate aged (32 years since fire) scars that were both subject to fire in 2007 (P < 0.001). However, there was no difference in mean F[subscript s,superscript T] between mature (59 years since fire) and intermediate aged (32 years since fire) scars that were both subjected to fire in 2007 (P = 0.226). Furthermore, there was no difference in mean F[subscript s,superscript T] between mature (59 years since fire) and young scars (16 years since fire) that were both subjected to fire in 2007 (P = 0.186). There was an increase in F[subscript s,superscript T] with time since fire for the chronosequence 0, 16 and 59 years post fire (P < 0.001). Our results lead us to hypothesise that the autotrophic:heterotrophic soil respiration ratio increases over post-fire successional time in boreal jack pine systems, though this should be explored in future research. The results of this study contribute to a better quantitative understanding of F[subscript s] in boreal jack pine fire scars and will facilitate meta-analyses of F[subscript s] in fire scar chronosequences.

History

Citation

Biogeosciences, 2010, 7 (5), pp. 1375-1381

Version

  • VoR (Version of Record)

Published in

Biogeosciences

Publisher

Copernicus GmbH (Copernicus Publications) on behalf of the European Geosciences Union (EGU)

issn

1726-4170

eissn

1726-4189

Available date

2010-05-11

Publisher version

http://www.biogeosciences.net/7/1375/2010/bg-7-1375-2010.html

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC