University of Leicester
Browse
Dehghanian_2020_ApJ_898_141.pdf (1.82 MB)

Space Telescope and Optical Reverberation Mapping Project. XI. Disk-wind Characteristics and Contributions to the Very Broad Emission Lines of NGC 5548

Download (1.82 MB)
Version 2 2021-01-19, 09:00
Version 1 2020-07-03, 16:54
journal contribution
posted on 2021-01-19, 09:00 authored by M Dehghanian, GJ Ferland, GA Kriss, BM Peterson, KT Korista, MR Goad, M Chatzikos, F Guzman, G de Rosa, M Mehdipour, J Kaastra, S Mathur, M Vestergaard, D Proga, T Waters, MC Bentz, S Bisogni, WN Brandt, E Dalla Bont a, MM Fausnaugh, JM Gelbord, Keith Horne, IM McHardy, RW Pogge, DA Starkey
In 2014 the NGC 5548 Space Telescope and Optical Reverberation Mapping campaign discovered a two-month anomaly when variations in the absorption and emission lines decorrelated from continuum variations. During this time the soft X-ray part of the intrinsic spectrum had been strongly absorbed by a line-of-sight (LOS) obscurer, which was interpreted as the upper part of a disk wind. Our first paper showed that changes in the LOS obscurer produce the decorrelation between the absorption lines and the continuum. A second study showed that the base of the wind shields the BLR, leading to the emission-line decorrelation. In that study, we proposed the wind is normally transparent with no effect on the spectrum. Changes in the wind properties alter its shielding and affect the SED striking the BLR, producing the observed decorrelations. In this work, we investigate the impact of a translucent wind on the emission lines. We simulate the obscuration using XMM-Newton, NuSTAR, and HST observations to determine the physical characteristics of the wind. We find that a translucent wind can contribute a part of the He II and Fe K? emission. It has a modest optical depth to electron scattering, which explains the fainter far-side emission in the observed velocity delay maps. The wind produces the very broad base seen in the UV emission lines and may also be present in the Fe K? line. Our results highlight the importance of accounting for the effects of such winds in the analysis of the physics of the central engine.

History

Citation

2020 ApJ 898 141

Author affiliation

Department of Physics and Astronomy

Version

  • VoR (Version of Record)

Published in

Astrophysical Journal

Volume

898

Issue

2

Publisher

Institute of Physics (IOP) for American Astronomical Society

issn

0004-637X

eissn

1538-4357

Acceptance date

2020-06-11

Copyright date

2020

Available date

2020-08-03

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC