University of Leicester
Browse

Star-product on complex sphere $\mathbb{S}^{2n}$

Download (426.42 kB)
journal contribution
posted on 2018-04-23, 13:43 authored by Andrey Mudrov
We construct a $U_q(\mathrm{so}(2n+1))$-equivariant local star-product on the complex sphere $\mathbb{S}^{2n}$ as a Non-Levi conjugacy class $SO(2n+1)/SO(2n)$.

History

Citation

Letters in Mathematical Physics, 2018, pp. 1-12

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Mathematics

Version

  • VoR (Version of Record)

Published in

Letters in Mathematical Physics

Publisher

Springer Verlag

issn

0377-9017

eissn

1573-0530

Copyright date

2018

Available date

2018-04-23

Publisher version

https://link.springer.com/article/10.1007/s11005-018-1074-z

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC