posted on 2019-06-14, 13:10authored byNV Brilliantov, W Otieno, SA Matveev, AP Smirnov, EE Tyrtyshnikov, PL Krapivsky
We report surprising steady oscillations in aggregation-fragmentation processes. Oscillating solutions are
observed for the class of aggregation kernels Ki,j = iν jμ + j ν iμ homogeneous in masses i and j of merging
clusters and fragmentation kernels, Fij = λKij , with parameter λ quantifying the intensity of the disruptive
impacts. We assume a complete decomposition (shattering) of colliding partners into monomers. We show that
an assumption of a steady-state distribution of cluster sizes, compatible with governing equations, yields a
power law with an exponential cutoff. This prediction agrees with simulation results when θ ≡ ν − μ < 1. For
θ = ν − μ > 1, however, the densities exhibit an oscillatory behavior. While these oscillations decay for not very
small λ, they become steady if θ is close to 2 and λ is very small. Simulation results lead to a conjecture that for
θ < 1 the system has a stable fixed point, corresponding to the steady-state density distribution, while for any
θ > 1 there exists a critical value λc, such that for λ<λc, the system has an attracting limit cycle. This is rather
striking for a closed system of Smoluchowski-like equations, lacking any sinks and sources of mass.
Funding
This work has been partly supported by the Russian Science
Foundation, Grant No. 14-11-00806.
History
Citation
Physical Review E , 2018, 98 (1)
Author affiliation
/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Mathematics