University of Leicester
Browse
Tambien2015.pdf (440.82 kB)

Stratigraphy and geochronology of the Tambien Group, Ethiopia: Evidence for globally synchronous carbon isotope change in the Neoproterozoic.

Download (440.82 kB)
journal contribution
posted on 2015-04-09, 11:08 authored by N. L. Swanson-Hysell, A. C. Maloof, D. J. Condon, Gawen R. T. Jenkin, M. Alene, M. M. Tremblay, T. Tesema, A. D. Rooney, B. Haileab
The Neoproterozoic Era was an interval characterized by profound environmental and biological transitions. Existing age models for Neoproterozoic nonglacial intervals largely have been based on correlation of carbonate carbon isotope values, but there are few tests of the assumed synchroneity of these records between basins. In contrast to the ash-poor successions typically targeted for Neoproterozoic chemostratigraphy, the Tonian to Cryogenian Tambien Group (Tigray region, Ethiopia) was deposited in an arc-proximal basin where volcanic tuffs suitable for U-Pb geochronology are preserved within the mixed carbonate-siliciclastic sedimentary succession. The Tambien Group culminates in a diamictite interpreted to correlate to the ca. 717–662 Ma Sturtian snowball Earth glaciation. New physical stratigraphic data and high-precision U-Pb dates from intercalated tuffs lead to a new stratigraphic framework for the Tambien Group that confirms identification of negative δ13C values from Assem Formation limestones with the ca. 800 Ma Bitter Springs carbon isotope stage. Integration with data from the Fifteenmile Group of northwestern Canada constitutes a positive test for the global synchroneity of the Bitter Spring Stage and constrains the stage to have started after 811.51 ± 0.25 Ma and to have ended before 788.72 ± 0.24 Ma. These new temporal constraints strengthen the case for interpreting Neoproterozoic carbon isotope variation as a record of large-scale changes to the carbon cycle and provide a framework for age models of paleogeographic change, geochemical cycling, and environmental evolution during the radiation of early eukaryotes.

Funding

Research funding came from U.S. National Science Foundation grants EAR1325230 (Swanson-Hysell) and EAR-1323158 (Maloof), an ExxonMobil grant (Swanson-Hysell), the Sloan Foundation (Maloof), Natural Environment Research Council IGF grant IP/947/1106 and a University of Leicester Academic Study Leave (Jenkin), the University of California, Carleton College, and the Princeton Department of Geosciences Tuttle Fund.

History

Citation

Geology. April 2015, v. 43, no. 4 p. 323-326

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Geology

Version

  • AM (Accepted Manuscript)

Published in

Geology. April 2015

Publisher

Geological Society of America

issn

0091-7613

eissn

1943-2682

Available date

2016-02-27

Publisher version

http://geology.gsapubs.org/content/43/4/323 http://geology.geoscienceworld.org/content/43/4/323

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC