posted on 2019-09-09, 09:20authored byVA Jackson, S Mehmood, M Chavent, P Roversi, M Carrasquero, D Del Toro, G Seyit-Bremer, FM Ranaivoson, D Comoletti, MSP Sansom, CV Robinson, R Klein, E Seiradake
Latrophilin adhesion-GPCRs (Lphn1-3 or ADGRL1-3) and Unc5 cell guidance receptors (Unc5A-D) interact with FLRT proteins (FLRT1-3), thereby promoting cell adhesion and repulsion, respectively. How the three proteins interact and function simultaneously is poorly understood. We show that Unc5D interacts with FLRT2 in cis, controlling cell adhesion in response to externally presented Lphn3. The ectodomains of the three proteins bind cooperatively. Crystal structures of the ternary complex formed by the extracellular domains reveal that Lphn3 dimerizes when bound to FLRT2:Unc5, resulting in a stoichiometry of 1:1:2 (FLRT2:Unc5D:Lphn3). This 1:1:2 complex further dimerizes to form a larger 'super-complex' (2:2:4), using a previously undescribed binding motif in the Unc5D TSP1 domain. Molecular dynamics simulations, point-directed mutagenesis and mass spectrometry demonstrate the stability and molecular properties of these complexes. Our data exemplify how receptors increase their functional repertoire by forming different context-dependent higher-order complexes.
Funding
We thank M. Jones, K. Harlos, D. Staunton and E. Lowe for technical support, the Diamond Light Source and ESRF for beamtime (proposals mx8423, mx9306, mx1747), the staff of beamlines I04-1 and ID-29, C. Vonrhein and tutors at the 2015 Diamond-CCP4 course for advice on data processing and refinement. We thank E.Y. Jones for initial crystallographic facilities and N. Zitzmann for computer facilities. M.Ch. thanks C. Song for fruitful discussion. We thank J. Egea for a construct of FLRT2 with a FLAG tag sequence at the C terminus. This work was funded by the UK Medical Research Council (MR/L018039/1), the John Fell OUP Research Fund, the Max-Planck Society, and the Deutsche Forschungsgemeinschaft SFB 834 and EXC 115. D.dT. was funded by a Marie Curie IEF fellowship (ID 274541). V.A.J was supported by a Wellcome Trust DPhil studentship. D.C. was supported by National Institutes of Health grant MH092906 and grant 67038 from the Robert Wood Johnson Foundation to the Child Health Institute of New Jersey. Research in MSPS’s group is supported by the Wellcome Trust (WT092970MA). S.M. and C.V.R. acknowledge support from a Medical Research Council Program grant (98101). Molecular Dynamics simulations were performed using the ARCHER supercomputer via the EPSRC-funded HECBioSim consortium.
Accession codes: The RCSB PDB accession number for the tetrameric and octameric
Lphn3:FLRT2:Unc5D complexes reported in this paper are 5ftu and 5ftt, respectively.
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications