posted on 2016-01-04, 14:51authored byM. H. Ahmad, N. Bashir, Z. Buntat, Y. Z. Arief, A. A. A. Jamil, M. A. M. Piah, A. A. Suleiman, Steve Dodd, Nikola Chalashkanov
This study investigated electrical treeing and its associated phase-resolved partial discharge (PD) activities in room-temperature, vulcanized silicone rubber/organomontmorillonite nanocomposite sample materials over a range of temperatures in order to assess the effect of temperature on different filler concentrations under AC voltage. The samples were prepared with three levels of nanofiller content: 0% by weight (wt), 1% by wt, and 3% by wt. The electrical treeing and PD activities of these samples were investigated at temperatures of 20°C, 40°C, and 60°C. The results show that the characteristics of the electrical tree changed with increasing temperature. The tree inception times decreased at 20°C due to space charge dynamics, and the tree growth time increased at 40°C due to the increase in the number of cross-link network structures caused by the vulcanization process. At 60°C, more enhanced and reinforced properties of the silicone rubber-based nanocomposite samples occurred. This led to an increase in electrical tree inception time and electrical tree growth time. However, the PD characteristics, particularly the mean phase angle of occurrence of the positive and negative discharge distributions, were insensitive to variations in temperature. This reflects an enhanced stability in the nanocomposite electrical properties compared with the base polymer.
Funding
The authors wish to thank Universiti Teknologi Malaysia and Ministry of Education for financial support through research Grants Vot nos. 01K07, 4F599, 4F398, and 06H77. Last but not least, special thanks are due to Professor Dr. John Fothergill from City University, UK, Dr. Steve Dodd, and Dr. Nikola Chalashkanov from University of Leicester, UK, for their kind contributions and help during the study.
History
Citation
Journal of Nanomaterials Volume 2015 (2015), Article ID 962767, 13 pages
Author affiliation
/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Engineering