University of Leicester
Browse
- No file added yet -

The Bardeen–Petterson effect in accreting supermassive black hole binaries: disc breaking and critical obliquity

Download (2.89 MB)
journal contribution
posted on 2022-01-18, 14:43 authored by Rebecca Nealon, Enrico Ragusa, Davide Gerosa, Giovanni Rosotti, Riccardo Barbieri
The inspiral of supermassive black hole (BH) binaries in a gas-rich environment is driven by the presence of an accretion disc and viscous interactions tend to align the spin of the BHs with the orbital angular momentum of the disc. Recent work introduced a new iterative approach to describe the alignment process and the resulting non-linear evolution of the surrounding warped accretion disc. Their model predicted that BH spins reach either full alignment or a ‘critical obliquity’ where solutions to the warp equations cease to exist. In this paper, we show that this critical region corresponds to the disc breaking phenomenon, where the disc is disrupted into two or more discrete sections. We use 3D hydrodynamical simulations to (i) recover the predictions of the semi-analytic model and (ii) unveil a richer phenomenology where the disc exhibits either unsuccessful, single and multiple breaks. We additionally identify hydrodynamic effects such as spiral arms that are able to stabilize the disc against breaking beyond criticality. Our results show that when disc breaking occurs, the ability of BHs and disc to align is compromised and in some cases even prevented as the binary inspirals.

History

Citation

Monthly Notices of the Royal Astronomical Society, Volume 509, Issue 4, February 2022, Pages 5608–5621, https://doi.org/10.1093/mnras/stab3328

Author affiliation

Department of Physics and Astronomy

Version

  • AM (Accepted Manuscript)

Published in

Monthly Notices of the Royal Astronomical Society

Volume

509

Issue

4

Pagination

5608 - 5621

Publisher

Oxford University Press (OUP) for Royal Astronomical Society

issn

0035-8711

eissn

1365-2966

Acceptance date

2021-11-10

Copyright date

2021

Available date

2022-01-18

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC