posted on 2015-11-25, 09:53authored byJamie E. Marshall, Bayan H. A. Faraj, Alexandre R. Gingras, Rana Lonnen, Md. Arif Sheikh, Mohammed El-Mezgueldi, Peter C. E. Moody, Peter W. Andrew, Russell Wallis
Pneumolysin is a cholesterol-dependent cytolysin (CDC) and virulence factor of Streptococcus pneumoniae. It kills cells by forming pores assembled from oligomeric rings in cholesterol-containing membranes. Cryo-EM has revealed the structures of the membrane-surface bound pre-pore and inserted-pore oligomers, however the molecular contacts that mediate these oligomers are unknown because high-resolution information is not available. Here we have determined the crystal structure of full-length pneumolysin at 1.98 Å resolution. In the structure, crystal contacts demonstrate the likely interactions that enable polymerisation on the cell membrane and the molecular packing of the pre-pore complex. The hemolytic activity is abrogated in mutants that disrupt these intermolecular contacts, highlighting their importance during pore formation. An additional crystal structure of the membrane-binding domain alone suggests that changes in the conformation of a tryptophan rich-loop at the base of the toxin promote monomer-monomer interactions upon membrane binding by creating new contacts. Notably, residues at the interface are conserved in other members of the CDC family, suggesting a common mechanism for pore and pre-pore assembly.
History
Citation
Scientific Reports, 2015, 5 : 13293
Author affiliation
/Organisation/COLLEGE OF MEDICINE, BIOLOGICAL SCIENCES AND PSYCHOLOGY/School of Medicine/Department of Infection, Immunity and Inflammation