University of Leicester
Browse

The Effects of Waves on the Meridional Thermal Structure of Jupiter’s Stratosphere

Download (1.67 MB)
journal contribution
posted on 2020-11-26, 09:54 authored by Richard G Cosentino, Thomas Greathouse, Amy Simon, Rohini Giles, Raúl Morales-Juberías, Leigh N Fletcher, Glenn Orton
The American Astronomical Society, find out more



The Institute of Physics, find out more



THE FOLLOWING ARTICLE ISOPEN ACCESS
The Effects of Waves on the Meridional Thermal Structure of Jupiter's Stratosphere
Richard G. Cosentino1, Thomas Greathouse2, Amy Simon3, Rohini Giles2, Raúl Morales-Juberías4, Leigh N. Fletcher5 and Glenn Orton6

Published 2020 November 10 • © 2020. The Author(s). Published by the American Astronomical Society.
The Planetary Science Journal, Volume 1, Number 3
DownloadArticle PDF DownloadArticle ePub
Figures
Tables
References
Download PDFDownload ePub
318 Total downloads
Turn on MathJax
Share this article

Share this content via email
Share on Facebook
Share on Twitter
Share on Google+
Share on Mendeley
Hide article information
Author affiliations
1 Department of Astronomy, University of Maryland, College Park, MD 20742, USA

2 Southwest Research Institute, San Antonio, TX 78238, USA

3 Solar System Exploration Div., NASA/GSFC, Greenbelt, MD 20771, USA

4 Physics Department, New Mexico Institute of Technology, Socorro, NM 87801, USA

5 School of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK

6 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA

ORCID iDs
Richard G. Cosentino https://orcid.org/0000-0003-3047-615X

Thomas Greathouse https://orcid.org/0000-0001-6613-5731

Amy Simon https://orcid.org/0000-0003-4641-6186

Rohini Giles https://orcid.org/0000-0002-7665-6562

Leigh N. Fletcher https://orcid.org/0000-0001-5834-9588

Glenn Orton https://orcid.org/0000-0001-7871-2823

Dates
Received 2020 June 16
Accepted 2020 September 30
Published 2020 November 10
Check for updates using Crossmark

Citation
Richard G. Cosentino et al 2020 Planet. Sci. J. 1 63

Create citation alert

DOI
https://doi.org/10.3847/PSJ/abbda3

Keywords
Jupiter ; Stratosphere ; Infrared observatories

Journal RSS feed

Sign up for new issue notifications

Abstract
A thermal oscillation in Jupiter's equatorial stratosphere, thought to have ~4 Earth year period, was first discovered in 7.8 μm imaging observations from the 1980s and 1990s. Such imaging observations were sensitive to the 10–20 hPa pressure region in the atmosphere. More recent 7.8 μm long-slit high-spectroscopic observations from 2012 to 2017 taken using the Texas Echelon cross-dispersed Echelle Spectrograph (TEXES), mounted on the NASA Infrared Telescope Facility (IRTF), have vertically resolved this phenomenon's structure, and show that it spans a range of pressure from 2 to 20 hPa. The TEXES instrument was mounted on the Gemini North telescope in March 2017, improving the diffraction-limited spatial resolution by a factor of ~2.5 compared with that offered by the IRTF. This Gemini spatial scale sensitivity study was performed in support of the longer-termed Jupiter monitoring being performed at the IRTF. We find that the spatial resolution afforded by the smaller 3 m IRTF is sufficient to spatially resolve the 3D structure of Jupiter's equatorial stratospheric oscillation by comparing the thermal retrievals of IRTF and Gemini observations. We then performed numerical simulations in a general circulation model to investigate how the structure of Jupiter's stratosphere responds to changes in the latitudinal extent of wave forcing in the troposphere. We find our simulations produce a lower limit in meridional wave forcing of ±7° (planetocentric coordinates) centered about the equator. This likely remains constant over time to produce off-equatorial thermal oscillations at ±13°, consistent with observations spanning nearly four decades.

History

Citation

Richard G. Cosentino et al 2020 Planet. Sci. J. 1 63

Author affiliation

Department of Physics and Astronomy

Version

  • VoR (Version of Record)

Published in

The Planetary Science Journal

Volume

1

Issue

3

Publisher

American Astronomical Society

eissn

2632-3338

Acceptance date

2020-09-30

Copyright date

2020

Available date

2020-11-10

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC