posted on 2019-07-02, 10:42authored byF Lecky, W Russell, G Fuller, G McClelland, E Pennington, S Goodacre, K Han, A Curran, D Holliman, J Freeman, N Chapman, M Stevenson, S Byers, S Mason, H Potter, T Coats, K Mackway-Jones, M Peters, J Shewan, M Strong
BACKGROUND: Reconfiguration of trauma services, with direct transport of traumatic brain injury (TBI) patients to neuroscience centres (NCs), bypassing non-specialist acute hospitals (NSAHs), could potentially improve outcomes. However, delays in stabilisation of airway, breathing and circulation (ABC) and the difficulties in reliably identifying TBI at scene may make this practice deleterious compared with selective secondary transfer from nearest NSAH to NC. National Institute for Health and Care Excellence guidance and systematic reviews suggested equipoise and poor-quality evidence - with regard to 'early neurosurgery' in this cohort - which we sought to address. METHODS: Pilot cluster randomised controlled trial of bypass to NC conducted in two ambulance services with the ambulance station (n = 74) as unit of cluster [Lancashire/Cumbria in the North West Ambulance Service (NWAS) and the North East Ambulance Service (NEAS)]. Adult patients with signs of isolated TBI [Glasgow Coma Scale (GCS) score of < 13 in NWAS, GCS score of < 14 in NEAS] and stable ABC, injured nearest to a NSAH were transported either to that hospital (control clusters) or bypassed to the nearest NC (intervention clusters). PRIMARY OUTCOMES: recruitment rate, protocol compliance, selection bias as a result of non-compliance, accuracy of paramedic TBI identification (overtriage of study inclusion criteria) and pathway acceptability to patients, families and staff. 'Open-label' secondary outcomes: 30-day mortality, 6-month Extended Glasgow Outcome Scale (GOSE) and European Quality of Life-5 Dimensions. RESULTS: Overall, 56 clusters recruited 293 (169 intervention, 124 control) patients in 12 months, demonstrating cluster randomised pre-hospital trials as viable for heath service evaluations. Overall compliance was 62%, but 90% was achieved in the control arm and when face-to-face paramedic training was possible. Non-compliance appeared to be driven by proximity of the nearest hospital and perceptions of injury severity and so occurred more frequently in the intervention arm, in which the perceived time to the NC was greater and severity of injury was lower. Fewer than 25% of recruited patients had TBI on computed tomography scan (n = 70), with 7% (n = 20) requiring neurosurgery (craniotomy, craniectomy or intracranial pressure monitoring) but a further 18 requiring admission to an intensive care unit. An intention-to-treat analysis revealed the two trial arms to be equivalent in terms of age, GCS and severity of injury. No significant 30-day mortality differences were found (8.8% vs. 9.1/%; p > 0.05) in the 273 (159/113) patients with data available. There were no apparent differences in staff and patient preferences for either pathway, with satisfaction high with both. Very low responses to invitations to consent for follow-up in the large number of mild head injury-enrolled patients meant that only 20% of patients had 6-month outcomes. The trial-based economic evaluation could not focus on early neurosurgery because of these low numbers but instead investigated the comparative cost-effectiveness of bypass compared with selective secondary transfer for eligible patients at the scene of injury. CONCLUSIONS: Current NHS England practice of bypassing patients with suspected TBI to neuroscience centres gives overtriage ratios of 13 : 1 for neurosurgery and 4 : 1 for TBI. This important finding makes studying the impact of bypass to facilitate early neurosurgery not plausible using this study design. Future research should explore an efficient comparative effectiveness design for evaluating 'early neurosurgery through bypass' and address the challenge of reliable TBI diagnosis at the scene of injury. TRIAL REGISTRATION: Current Controlled Trials ISRCTN68087745. FUNDING: This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 20, No. 1. See the NIHR Journals Library website for further project information.
Funding
The authors would also like to acknowledge the help and support of the following:
l Professor Jonathan Benger, who chaired the HITS-NS Trial Steering Group, and the independent
members Alastair White and Mike Page
l Professor Helen Snooks, who chaired the HITS-NS Data Monitoring and Ethics Committee, and the
independent members Professor Peter Hutchinson, Dr Simon Gates and Dr Rod Mackenzie
l all the staff in NEAS, NWAS, the Royal Victoria Infirmary Newcastle, JCUH Middlesbrough, the Royal
Preston Hospital, HITS-NS eight acute hospital trusts, and Lancashire and South Cumbria, Durham and
Tees Valley and Northumberland Tyne and Wear CLRNs, who helped in making this challenging
study possible
l Laura White, Tom Jenks and Thomas Stacey from TARN for their expertise and support with data
collection, coding and management
l Antoinette Edwards from TARN for creating and developing the HITS-NS website
l Joanne Casson for assistance in report preparation and administration
l Hannah Newcombe and members of Salford and Trafford Headway for developing the HITS-NS patient
satisfaction questionnaire
l staff from the University of Manchester, Greater Manchester CLRN and the North Wales REC NW10,
who assisted with research governance/study amendments.
History
Citation
Health Technology Assessment, 2016, 20 (1), pp. 1-198
Author affiliation
/Organisation/COLLEGE OF LIFE SCIENCES/School of Medicine/Department of Cardiovascular Sciences