University of Leicester
Browse
Shapley17b.pdf (623.26 kB)

The MOSDEF Survey: First Measurement of Nebular Oxygen Abundance at z > 4

Download (623.26 kB)
journal contribution
posted on 2018-08-15, 15:31 authored by Alice E. Shapley, Ryan L. Sanders, Naveen A. Reddy, Mariska Kriek, William R. Freeman, Bahram Mobasher, Brian Siana, Alison L. Coil, Gene C. K. Leung, Laura deGroot, Irene Shivaei, Sedona H. Price, Mojegan Azadi, James Aird
We present the first spectroscopic measurement of multiple rest-frame optical emission lines at z > 4. During the MOSFIRE Deep Evolution Field survey, we observed the galaxy GOODSN-17940 with the Keck I/MOSFIRE spectrograph. The K-band spectrum of GOODSN-17940 includes significant detections of the [O II]λλ3726,3729, [Ne III]λ3869, and Hγ emission lines and a tentative detection of Hδ, indicating zspec = 4.4121. GOODSN-17940 is an actively star-forming z > 4 galaxy based on its K-band spectrum and broadband spectral energy distribution. A significant excess relative to the surrounding continuum is present in the Spitzer/IRAC channel 1 photometry of GOODSN-17940, due primarily to strong Hα emission with a rest-frame equivalent width of EW(Hα) = 1200 Å. Based on the assumption of 0.5 Ze models and the Calzetti attenuation curve, GOODSN-17940 is characterized by M* = 5.0 ^ +4.3, -0.2 x 10^9 M⊙ The Balmer decrement inferred from Hα/Hγ is used to dust correct the Hα emission, yielding SFR (Hα) = 320 ^ +190, -140 M⊙ yr^-1.These M* and star formation rate (SFR) values place GOODSN-17940 an order of magnitude in SFR above the z ∼ 4 star-forming “main sequence.” Finally, we use the observed ratio of [Ne III]/[O II] to estimate the nebular oxygen abundance in GOODSN-17940, finding O/H ∼ 0.2 (O/H)e. Combining our new [Ne III]/[O II] measurement with those from stacked spectra at z ∼ 0, 2, and 3, we show that GOODSN-17940 represents an extension to z > 4 of the evolution toward higher [Ne III]/[O II] (i.e., lower O/H) at fixed stellar mass. It will be possible to perform the measurements presented here out to z ∼ 10 using the James Webb Space Telescope

Funding

We acknowledge support from NSF AAG grants AST-1312780, 1312547, 1312764, and 1313171; grant AR-13907 from the Space Telescope Science Institute; and grant NNX16AF54G from the NASA ADAP program. J.A. acknowledges support from ERC Advanced Grant FEEDBACK 340442. We also acknowledge the 3D-HST collaboration, who provided us with spectroscopic and photometric catalogs used to select MOSDEF targets and derive stellar population parameters. We thank Daniel Stark for insightful comments. We wish to extend special thanks to those of Hawaiian ancestry on whose sacred mountain we are privileged to be guests.

History

Citation

The Astrophysical Journal Letters, 2017, 846 (2), pp. L30-L30

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Physics and Astronomy

Version

  • VoR (Version of Record)

Published in

The Astrophysical Journal Letters

Publisher

American Astronomical Society, IOP Publishing

issn

2041-8205

eissn

2041-8213

Acceptance date

2017-08-23

Copyright date

2017

Available date

2018-08-15

Publisher version

http://iopscience.iop.org/article/10.3847/2041-8213/aa8815/meta

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC