University of Leicester
Browse

The Variable Fast Soft X-Ray Wind in PG 1211+143

Download (2.53 MB)
journal contribution
posted on 2018-10-10, 14:15 authored by J. N. Reeves, A. Lobban, Kenneth A. Pounds
The analysis of a series of seven observations of the nearby (z = 0.0809) QSO PG 1211+143, taken with the Reflection Grating Spectrometer (RGS) onboard XMM-Newton in 2014, are presented. The high-resolution soft X-ray spectrum, with a total exposure exceeding 600 ks, shows a series of blueshifted absorption lines from the He and H-like transitions of N, O, and Ne, as well as from L-shell Fe. The strongest absorption lines are all systematically blueshifted by −0.06c, originating in two absorption zones from low- and high-ionization gas. Both zones are variable on timescales of days, with the variations in absorber opacity effectively explained by either column density changes or the absorber ionization responding directly to the continuum flux. We find that the soft X-ray absorbers probably exist in a two-phase wind at a radial distance of ∼1017–1018 cm from the black hole with the lower-ionization gas as denser clumps embedded within a higher-ionization outflow. The overall mass outflow rate of the soft X-ray wind may be as high as 2M yr−1 , close to the Eddington rate for PG 1211+143 and similar to that previously deduced from the Fe K absorption.

History

Citation

The Astrophysical Journal, 2018, 854 (1)

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Physics and Astronomy

Version

  • VoR (Version of Record)

Published in

The Astrophysical Journal

Publisher

American Astronomical Society

issn

0004-637X

eissn

1538-4357

Acceptance date

2018-01-11

Copyright date

2018

Available date

2018-10-10

Publisher version

http://iopscience.iop.org/article/10.3847/1538-4357/aaa776/meta

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC