University of Leicester
Browse
1/1
2 files

The effect of stellar-mass black holes on the structural evolution of massive star clusters

journal contribution
posted on 2017-06-12, 13:31 authored by A. D. Mackey, Mark I. Wilkinson, M. B. Davies, G. F. Gilmore
We present the results of realistic N-body modelling of massive star clusters in the Magellanic Clouds, aimed at investigating a dynamical origin for the radius–age trend observed in these systems. We find that stellar-mass black holes, formed in the supernova explosions of the most massive cluster stars, can constitute a dynamically important population. If a significant ensemble is retained (here we assume complete retention), these objects rapidly form a dense core where interactions are common, resulting in the scattering of black holes into the cluster halo, and the ejection of black holes from the cluster. These two processes heat the stellar component, resulting in prolonged core expansion of a magnitude matching the observations. Significant core evolution is also observed in Magellanic Cloud clusters at early times. We find that this does not result from the action of black holes, but can be reproduced by the effects of mass-loss due to rapid stellar evolution in a primordially mass-segregated cluster.

History

Citation

Monthly Notices of the Royal Astronomical Society, 2007, 379 (1): L40-L44

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Physics and Astronomy

Version

  • VoR (Version of Record)

Published in

Monthly Notices of the Royal Astronomical Society

Publisher

Oxford University Press (OUP) for Royal Astronomical Society

issn

0035-8711

eissn

1365-2966

Copyright date

2007

Available date

2017-06-12

Publisher version

https://academic.oup.com/mnrasl/article-lookup/doi/10.1111/j.1745-3933.2007.00330.x

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC