posted on 2017-06-12, 13:31authored byA. D. Mackey, Mark I. Wilkinson, M. B. Davies, G. F. Gilmore
We present the results of realistic N-body modelling of massive star clusters in the Magellanic Clouds, aimed at investigating a dynamical origin for the radius–age trend observed in these systems. We find that stellar-mass black holes, formed in the supernova explosions of the most massive cluster stars, can constitute a dynamically important population. If a significant ensemble is retained (here we assume complete retention), these objects rapidly form a dense core where interactions are common, resulting in the scattering of black holes into the cluster halo, and the ejection of black holes from the cluster. These two processes heat the stellar component, resulting in prolonged core expansion of a magnitude matching the observations. Significant core evolution is also observed in Magellanic Cloud clusters at early times. We find that this does not result from the action of black holes, but can be reproduced by the effects of mass-loss due to rapid stellar evolution in a primordially mass-segregated cluster.
History
Citation
Monthly Notices of the Royal Astronomical Society, 2007, 379 (1): L40-L44
Author affiliation
/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Physics and Astronomy
Version
VoR (Version of Record)
Published in
Monthly Notices of the Royal Astronomical Society
Publisher
Oxford University Press (OUP) for Royal Astronomical Society