University of Leicester
MNRAS-2009-Collier Cameron-451-62.pdf (924.67 kB)

The main-sequence rotation-colour relation in the coma berenices open cluster

Download (924.67 kB)
journal contribution
posted on 2012-10-24, 09:06 authored by Collier Cameron A., V. A. Davidson, L. Hebb, G. Skinner, B. Enoch, K. D. Horne, A. Scholz, D. R. Anderson, C. Hellier, P. F. L. Maxted, B. Smalley, DM. Wilson, D. J. Christian, Y. Joshi, D. Pollacco, R. Ryans, W. I. Clarkson, J. Irwin, C. A. Haswell, A. J. Norton, N. Parley, S. R. Kane, T. A. Lister, R. A. Street, I. Skillen, R. G. West, P. J. Wheatley
We present the results of a photometric survey of rotation rates in the Coma Berenices (Melotte 111) open cluster, using data obtained as part of the SuperWASP exoplanetary transit-search programme. The goal of the Coma survey was to measure precise rotation periods for main-sequence F, G and K dwarfs in this intermediate-age (∼600 Myr) cluster, and to determine the extent to which magnetic braking has caused the stellar spin periods to converge. We find a tight, almost linear relationship between rotation period and J−K colour with an rms scatter of only 2 per cent. The relation is similar to that seen among F, G and K stars in the Hyades. Such strong convergence can only be explained if angular momentum is not at present being transferred from a reservoir in the deep stellar interiors to the surface layers. We conclude that the coupling time-scale for angular momentum transport from a rapidly spinning radiative core to the outer convective zone must be substantially shorter than the cluster age, and that from the age of Coma onwards stars rotate effectively as solid bodies. The existence of a tight relationship between stellar mass and rotation period at a given age supports the use of stellar rotation period as an age indicator in F, G and K stars of Hyades age and older. We demonstrate that individual stellar ages can be determined within the Coma population with an internal precision of the order of 9 per cent (rms), using a standard magnetic braking law in which rotation period increases with the square root of stellar age. We find that a slight modification to the magnetic-braking power law, P∝t0.56, yields rotational and asteroseismological ages in good agreement for the Sun and other stars of solar age for which p-mode studies and photometric rotation periods have been published.



Monthly Notices of the Royal Astronomical Society, 2009, 400 (1), pp. 451-462


  • VoR (Version of Record)

Published in

Monthly Notices of the Royal Astronomical Society


Oxford University Press (OUP)





Copyright date


Available date


Publisher version



Usage metrics

    University of Leicester Publications


    No categories selected



    Ref. manager