posted on 2021-01-08, 11:39authored byImma Gálvez-Carrillo, Ralph M Kaufmann, Andrew Tonks
We consider three a priori totally different setups for Hopf algebras from
number theory, mathematical physics and algebraic topology. These are the Hopf
algebra of Goncharov for multiple zeta values, that of Connes-Kreimer for
renormalization, and a Hopf algebra constructed by Baues to study double loop
spaces. We show that these examples can be successively unified by considering
simplicial objects, co-operads with multiplication and Feynman categories at
the ultimate level. These considerations open the door to new constructions and
reinterpretations of known constructions in a large common framework, which is
presented step-by-step with examples throughout. In this first part of two
papers, we concentrate on the simplicial and operadic aspects.
History
Citation
Communications in Number Theory and Physics
Volume 14 (2020), Number 1, pp. 1-90
This replacement is part I of the final version of the paper, which
has been split into two parts. The second part is available from the arXiv
under the title "Three Hopf algebras from number theory, physics & topology,
and their common background II: general categorical formulation"
arXiv:2001.08722