University of Leicester
Browse

Too small to succeed: The difficulty of sustaining star formation in low-mass haloes

Download (3.15 MB)
journal contribution
posted on 2017-06-07, 14:56 authored by Claire R. Cashmore, Mark I. Wilkinson, Chris Power, Martin Bourne
Published by Oxford University Press on behalf of the Royal Astronomical Society.We present high-resolution simulations of an isolated dwarf spheroidal (dSph) galaxy between redshifts z ~ 10 and z ~ 4, the epoch when several Milky Way dSph satellites experienced extended star formation, in order to understand in detail the physical processes which affect a low-mass halo's ability to retain gas. It is well established that supernova feedback is very effective at expelling gas from a 3 × 107 M· halo, the mass of a typical redshift 10 progenitor of a redshift 0 halo with mass ~109 M·. We investigate the conditions under which such a halo is able to retain sufficient high-density gas to support extended star formation. In particular, we explore the effects of: an increased relative concentration of the gas compared to the dark matter; a higher concentration dark matter halo; significantly lower supernova rates; enhanced metal cooling due to enrichment from earlier supernovae. We show that disc-like gas distributions retain more gas than spherical ones, primarily due to the shorter gas cooling times in the disc. However, a significant reduction in the number of supernovae compared to that expected for a standard initial mass function is still needed to allow the retention of highdensity gas. We conclude that the progenitors of the observed dSphs would only have retained the gas required to sustain star formation if their mass, concentration and gas morphology were already unusual for those of a dSph-mass halo progenitor by a redshift of 10.

History

Citation

Monthly Notices of the Royal Astronomical Society, 2017, 468 (1), pp. 451-468

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Physics and Astronomy

Version

  • VoR (Version of Record)

Published in

Monthly Notices of the Royal Astronomical Society

Publisher

Oxford University Press (OUP) for Royal Astronomical Society

issn

0035-8711

eissn

1365-2966

Acceptance date

2017-02-01

Copyright date

2017

Available date

2017-06-07

Publisher version

https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stx315

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC