posted on 2018-01-29, 17:31authored byKaren Gunderson, Jason Semeraro
We consider 4-uniform hypergraphs with the maximum number of hyperedges subject to the condition that every set of 5 vertices spans either 0 or exactly 2 hyperedges and give a construction, using quadratic residues, for an infinite family of such hypergraphs with the maximum number of hyperedges. Baber has previously given an asymptotically best-possible result using random tournaments. We give a connection between Baber's result and our construction via Paley tournaments and investigate a ‘switching’ operation on tournaments that preserves hypergraphs arising from this construction.
History
Citation
Journal of Combinatorial Theory. Series B, 2017, 126, pp. 114-136
Author affiliation
/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Mathematics
The file associated with this record is under embargo until 12 months after publication, in accordance with the publisher's self-archiving policy. The full text may be available through the publisher links provided above.