University of Leicester
Browse

Transcription factor dimerization activates the p300 acetyltransferase

Download (71.17 MB)
journal contribution
posted on 2019-05-14, 10:22 authored by Esther Ortega, Srinivasan Rengachari, Ziad Ibrahim, Naghmeh Hoghoughi, Jonathan Gaucher, Alex S. Holehouse, Saadi Khochbin, Daniel Panne
The transcriptional co-activator p300 is a histone acetyltransferase (HAT) that is typically recruited to transcriptional enhancers and regulates gene expression by acetylating chromatin. Here we show that the activation of p300 directly depends on the activation and oligomerization status of transcription factor ligands. Using two model transcription factors, IRF3 and STAT1, we demonstrate that transcription factor dimerization enables the trans-autoacetylation of p300 in a highly conserved and intrinsically disordered autoinhibitory lysine-rich loop, resulting in p300 activation. We describe a crystal structure of p300 in which the autoinhibitory loop invades the active site of a neighbouring HAT domain, revealing a snapshot of a trans-autoacetylation reaction intermediate. Substrate access to the active site involves the rearrangement of an autoinhibitory RING domain. Our data explain how cellular signalling and the activation and dimerization of transcription factors control the activation of p300, and therefore explain why gene transcription is associated with chromatin acetylation.

Funding

This work was supported by grant 16-0280 from Worldwide Cancer Research. E.O. was supported by an EMBL Interdisciplinary Postdoctoral (EIPOD) fellowship. S.R. was supported by the Fondation ARC pour la recherche sur le Cancer and by the Fondation FINOVI. A.S.H. is a postdoctoral fellow in the laboratory of R.V. Pappu at Washington University in St. Louis. The computational work was supported by the Human Frontiers Science Program (grant RGP0034/2017 to R.V. Pappu) and the St Jude Collaborative Research Consortium on Membraneless Organelles (to R.V. Pappu). We thank the staff at the European Synchrotron Radiation Facility (ESRF) beamlines ID29; L. Signor for mass spectroscopy analysis; R. Vance for the plasmid encoding GST-STING; and P. Cole for the A-485 inhibitor. S.K. and D.P. were supported by ANR Episperm3 program. S.K. received additional support from Fondation ARC Canc’air project (RAC16042CLA), Plan Cancer (CH7-INS15B66 and ASC16012CSA) and the Université Grenoble Alpes ANR-15-IDEX-02 LIFE and IDEX SYMER.

History

Citation

Nature, 2018, 562, pp. 538–544

Author affiliation

/Organisation/COLLEGE OF LIFE SCIENCES/Biological Sciences/Molecular & Cell Biology

Version

  • AM (Accepted Manuscript)

Published in

Nature

Publisher

Nature Research (part of Springer Nature)

issn

0028-0836

Acceptance date

2018-08-15

Copyright date

2018

Available date

2019-05-14

Publisher version

https://www.nature.com/articles/s41586-018-0621-1

Notes

Coordinates for the p300 core structure and BΔRP bound to a diacetylated histone H4 peptide are available from the Protein Data Bank (PDB) under accession numbers 6GYR and 6GYT, respectively. Source data are available for Fig. 1b, f and Extended Data Fig. 1d. Figure 1d shows the initial velocities from reactions shown in Extended Data Fig. 1d.

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC