posted on 2019-09-09, 15:49authored byJoanna M. Hay, Eva S. Jordan, Gareth J. Browne, Andrew R. Bottrill, Sally A. Prigent, Martin Dickens
Myocyte Stress Protein 1 (MS1) is a muscle-specific, stress-responsive, regulator of gene expression. It was originally identified in embryonic mouse heart which showed increased expression in a rat model of left ventricular hypertrophy. To determine if MS1 was responsive to other stresses relevant to cardiac myocyte function, we tested if it could be induced by the metabolic stresses associated with ischaemia/reperfusion injury in cardiac myocytes. We found that metabolic stress increased MS1 expression, both at the mRNA and protein level, concurrent with activation of the c-Jun N-terminal Kinase (JNK) signalling pathway. MS1 induction by metabolic stress was blocked by both the transcription inhibitor actinomycin D and a JNK inhibitor, suggesting that activation of the JNK pathway during metabolic stress in cardiac myocytes leads to transcriptional induction of MS1. MS1 was also found to be an efficient JNK substrate in vitro, with a major JNK phosphorylation site identified at Thr-62. In addition, MS1 was found to co-precipitate with JNK, and inspection of the amino acid sequence upstream of the phosphorylation site, at Thr-62, revealed a putative Mitogen-Activated Protein Kinase (MAPK) binding site. Taken together, these data identify MS1 as a likely transcriptional and post-translational target for the JNK pathway in cardiac myocytes subjected to metabolic stress.
Funding
This work was supported by a Biotechnology and Biological Sciences Research Council departmental studentship (JH) and a University of Leicester PhD scholarship (EJ). Partial funding from the British Heart Foundation (Grant #13566) supported GB.
History
Citation
Journal of Molecular Signaling. 2017;12:3.
Author affiliation
/Organisation/COLLEGE OF LIFE SCIENCES/Biological Sciences/Molecular & Cell Biology