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The importance of transient dynamics of both ecological systems and the mod- 

els that describe them has become increasingly recognized. However, previous 

work has typically  treated each instance of these dynamics separately.  Here, 

we review both empirical  examples and model systems, and outline a classi- 

fication of transient  dynamics based on ideas and concepts from dynamical 

systems theory.  This classification provides ways to understand  the likelihood 

of transients for particular systems, and to guide investigations to determine 
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the timing of sudden switches in dynamics and other characteristics of tran- 

sients. Implications  for both management and underlying  ecological theories 

emerge. 
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Introduction 

Understanding ecological dynamics over relevant timescales underpins almost all major ques- 

tions in ecology, ranging from explanations for observed distributions  and abundances of species 

to population  changes through time to management of ecological systems. There is a growing 

recognition that dynamics on ecological time scales may be different than asymptotic dynamics; 

these dynamics are called transients.  The inherent impermanence of transients means that an 

ecological system in a transient state can change abruptly, even without  any underlying  change 

in environmental conditions (parameters). Conversely, the possibility of long transients implies 

that an ecological system may remain far from its asymptotic behavior for a long time. 

Thus, understanding the implications  of transients for ecology depends on understanding 

potential rapid transitions between two kinds of dynamics, behavior of systems far from their 

final dynamics, and the underlying  time scales for these transitions.  However, with the current 

lack of a systematic framework  to facilitate understanding of transient dynamics, each example 

appears novel and idiosyncratic. Concepts from dynamical  systems can provide  tools for a 

more systematic approach to the incorporation of transient dynamics in ecological models and 

theories,  as well as guide applications  to natural and managed systems. Tools will emerge for 

understanding which ecological factors produce long transients, and appropriate responses to 

the possibility of sudden system changes in management and in experimental and observational 

studies. 

A major ecological question is how to relate observations of changes in dynamics to under- 

lying causes.  With transients there may be no underlying  proximal  cause of a sudden change 

in dynamics.  There may have been no underlying environmental change, or the change may 

have occurred quite far in the past. In contrast, identification of the proximal factors respon- 

sible for regime shifts has been a major  focus  of attention over the last two decades  (1, 2). 
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One conjectured mechanism is regime shifts occurring  as a result of slow, directional, change 

in ecological  parameters, especially when such a change leads to a “bifurcation” of the ecosys- 

tem properties (e.g. a disappearance  of a stable steady state) (1, 2), also known  as a “tipping 

point”. In turn, the directional  change in parameter values is often assumed to occur due to 

an exogenous process such as, for instance, global climate change. Intense study of one kind 

of exogenously-triggered regime shift (those caused by saddle node bifurcations)  has provided 

important insights (1, 3, 4) across a range of ecological systems. There is, however,  a growing 

body of evidence that we review here, from both empirical  and modeling studies, suggesting 

alternative underlying mechanisms for some regime shifts. 

The approach for understanding regime shifts can be extended to a much  broader  range 

of phenomena and systems by focusing on transients in ecological systems, where once again 

ideas from dynamical  systems can organize what may at first appear to be a disparate  set of 

observations and explanations.  In the cases we focus on here, the ecological  dynamics are es- 

sentially transient (5–10) and shifts occur in the absence of any clear trend in the environmental 

properties. Ecological transients can arise for a number of reasons ranging from  response to en- 

vironmental fluctuations to a variety  of human interventions.  While some transients are short, 

others can last for a very long time. An ecosystem exhibiting long transient behavior would typ- 

ically show an apparently stable dynamic (e.g. periodic oscillations, as in Fig. 1a,d,e) over time 

that may span dozens or even hundreds of generations before experiencing  a sudden transition 

to another state (e.g. extinction)  or another regime (e.g. oscillations with a very different mean 

value). Therefore, long transients may provide an alternative explanation of ecological regimes 

shifts. 

Transients are not an isolated phenomenon, but are related to other aspects of the dynamics 

of ecological systems that provide challenges for long term prediction. With transient dynamics, 

the difficulty of predicting the timing of the shift between dynamic behaviors is compounded 
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Figure 1: Examples of transient dynamics. (a–c) Empirical  examples of regime shifts occurring after 
long transient dynamics: (a) the population abundance of voles in northern Sweden, showing a transition 
from large-amplitude periodic oscillations to nearly steady-state dynamics (redrawn from (11)); (b) the 
biomass of forage fishes in the eastern Scotian Shelf ecosystem; a low-density  steady state changes to 
a dynamical  regime with a much higher average density (blue line is the estimated carrying capacity; 
bars are ± s.e.m.; redrawn from (12)). (c) Spruce budworm  (dots; data from (13)) has a much  faster 
generation time than its host tree, resulting in extended periods of low budworm density interrupted by 
outbreaks. (c–e) Examples of long transients in population  dynamics models: (c) a model (blue line) with 
fast budworm dynamics and slow foliage dynamics shows qualitative agreement with the data (14); (d) 
apparently sustainable chaotic oscillation suddenly result in species extinction  (15); (e) large-amplitude 
periodic oscillations that persist over hundreds of generations suddenly transition to oscillations with a 
much smaller amplitude and a very different mean (16). 

5 
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by the difficulty of determining asymptotic behavior from observations of short term behavior 

(or the converse). Chaotic dynamics limit the time over which accurate predictions are possible 

(17–19).  The permanent influence of external and internal noise on population dynamics also 

substantially reduces ecological predictability in a number  of ways (20, 21). Ecological pre- 

dictions are further complicated by regime shifts (3, 4) that occur as underlying  environmental 

conditions slowly change. As a result, any conclusions  or estimates made based on the obser- 

vations before the regime shift simply become irrelevant after the shift. Regime shifts can often 

result in catastrophic changes in the ecosystem structure and function,  in particular leading to 

species extinction and biodiversity loss. 

Although  long transients are often observed in ecological  data (see Table 1) and have been 

seen in many different models in ecology (5, 15, 16) as well as other natural sciences (22), a 

systematic consideration of this highly relevant phenomenon has been missing  so far. Addi- 

tionally, there has been some confusion about the relationship  between regime shifts and long 

transients. We begin with an overview  of ideas from dynamical systems that show why tran- 

sients are a universal  feature of ecological systems. We propose a simple classification  scheme 

that shows that the mechanisms producing transients can be put into a small number of classes. 

This classification thus provides a new unified framework for incorporating transients into both 

interpretations of ecological dynamics and into management responses. Additionally,  we pro- 

vide a road-map  for future investigations  based on open challenges in the study of transient 

dynamics. 

Classification and mechanisms 

The unifying principle  underlying  past studies of long transients is a focus  on multiple time 

scales  (35). One example is regime shifts where slow parameter changes eventually  lead to 

relatively rapid shifts in the state of an ecosystem:  there is a slow and a fast time scale.  We 
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Table 1: Empirical evidence for long ecological transients. 
Population(s) Observed pattern Duration in 

generations (years) 
Laboratory population of beetles 
(Tribolium spp.) (23) 

Switch from a regime with an almost 
constant density to large amplitude 
oscillations 

15 (∼1.5 yrs (70 
weeks)) 

Growth of macrophytes in shallow 
eutrophic lakes in the Nethelands 
(24) 

Switch from a 
macrophyte-dominated state to a 
turbid water state 

1-5 (1-5 yrs)

Population of large-bodied benthic 
fishes on the Scotian Shelf of 
Canada’s east coast  (12) 

Switch from forage fish (and 
macroinvertebrate) dominated state 
to benthic fish dominated state 

5-8 (20 yrs)

Coral and microalgae in the 
Caribbean  (25, 26) 

Shifts from coral to macroalgal 
dominance on coral reefs 

20-25 (corals); 50-100
(macroalgae) (10 yrs)

Voles, grouse in Europe  (27) Switch between cyclic and 
non-cyclic  regimes or between cyclic 
regimes with different periodicity 

60 (voles); 20-30 
(lemmings); 5 (grouse) 
(∼30 yrs) 

Dungeness crab (Cancer magister) 
(28) 

Large amplitude transient 
oscillations with further relaxation to 
equilibrium 

10-15 (45 yrs)

Zooplankton-algal interactions in 
temperate lakes in Germany  (29) 

Variation of amplitude and period of 
predator-prey oscillations  across the 
season 

80-100 (algae); 5-8
(zooplankton) (1 yr)

Planktonic species in chemostat and 
temperate lakes (30) 

Long term variation of species 
densities with extinction of some 

40-100 (∼0.05 - 0.15
yrs (3-8 weeks))

Laboratory microbial 
communities (31) 

Slow switch between alternative 
stable states 

20-40 (0.11-0.21 yrs
(6-12 weeks))

Grass community in abandoned 
agricultural fields in 
Netherlands (32) 

Long-term existence of a large 
number of alternative transient states 

10 (9 yrs) 

Extinction debt phenomena  as a 
consequence of habitat loss (plants, 
birds, fish, lichens and others (33)) 

Long-term extinction of populations 
that occurs either steadily or via 
oscillations 

20-100 (or more)
(1-100 yrs)

Fish and invertebrates in watersheds 
in western North Carolina, USA (34) 

Influence of past habitat structure on 
present biodiversity  patterns after 
restoration 

10-20 (fish); 40
(invertebrates) (40 yrs)

Modeled spruce budworm outbreaks 
in balsam fir forests (14) 

Budworm outbreaks driven by slow 
changes in condition of fir foliage 

5 (refoliation); 50+ 
(budworm) (50 yrs) 



extend this view in two critically important ways: we ask about the dynamics on both time 

scales and we include other ways that transients arise. Beyond this emphasis on multiple scales 

we emphasize that the ecologically  relevant time scales are typically not the asymptotic time 

scales which have been the focus of many ecological  modeling studies and which form the 

basis of theory on which many empirical studies rest. Neither are very short time scales the 

appropriate focus. 

The tools of dynamical  systems provide the means for a systematic  approach to long tran- 

sients. Thus a first step is a very short review of concepts from dynamical systems (35) that 

underly the more traditional view of ecological  systems representing and being represented by 

the asymptotic behavior of mathematical models. The simplest long term, or asymptotic, behav- 

ior would be a stable equilibrium;  a slightly more complex possibility  would be a stable limit 

cycle. A cycle or an equilibrium are both examples of invariant sets: if the system is at an equi- 

librium or on a cycle it will remain there forever in the absence of any perturbation or change 

in parameter values. There are also more complex  invariant  sets, including chaotic ones. Under 

the traditional  view of ecological systems, on time scales that are relevant for understanding 

these systems, the focus should not only be on invariant  sets, but limited to the stable invari- 

ant sets that are approached through time. A major limitation of this view is that the relevant 

timescale for important ecological questions may be short enough that the asymptotic behavior 

is not an appropriate description.  We can, however, still use ideas from dynamical systems to 

understand and classify the behavior of ecological  systems on these shorter (but not very short) 

time scales. 

There is a broad range of transient patterns in real ecological systems, likely caused by a 

range of mechanisms (Table 1). We can classify those mechanisms into two general categories: 

those that occur in the vicinity of an invariant  set, and those that do not. Within this broad 

classification we also can identify properties that make a system particularly  prone to long 

8 
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transients such as the presence of multiple time scales, high dimensionality and stochasticity. 

We call a dynamical regime (e.g. a nearly-constant state or persistent cycles) a long transient 

if it exhibits the following two properties: 

• The dynamical regime persists for a sufficiently long time and is quasi-stable (approached

over shorter time scales), rather than actually stable. Thus, if the dynamics are ob-

served for a sufficiently long time (in appropriate time units, e.g. generations of a relevant

species), a clearly  seen transition  eventually  occurs to another equilibrium  or dynamic

regime.

• The transition between the regimes occurs on a time scale much shorter than the time of

existence of the quasi-stable regime. In other words, the dynamics both before and after

the transition last much longer than the time of transition.

Below,  we consider a few simple models that exhibit long transients with somewhat different 

properties.  We use these to formalize  our classification and describe the mechanisms underlying 

the long transients. 

Ghosts and Crawl-bys 

One class of long transients arises when a system is near a bifurcation. If we imagine a system’s 

dynamics  represented as a ball rolling on an uneven surface, wells correspond to stable equilib- 

ria and peaks to unstable ones.  If placed into a well, the ball will roll to a stable equilibrium 

(Fig. 2a). Consider now the situation where the surface is being gradually deformed in such a 

way that one of the wells becomes more and more shallow. Eventually  the system passes the 

tipping point at which the stable equilibrium  at the bottom of this well and the adjacent unstable 

equilibrium both disappear, and the ball starts rolling down the slope (Fig. 2b). However, how 

fast it starts moving away or, in other words, for how much time it remains in the vicinity of 



10 

the location where the stable equilibrium  was before the bifurcation, depends on the flatness of 

the slope. The flatter the surface is, the longer the ball stays close to its original location before 

moving away: the long transient emerges. Although beyond the tipping point the system does 

not possess an equilibrium at this long-lasting state, for a considerable time its dynamics mimic 

the dynamics of the system with an attractor here (Fig. 2c-d). We call this situation  a ghost 

attractor (36) or simply a ghost. 

The origin of a ghost attractor and an example of the long transients it can cause are shown 

in Fig. 2a-d. To understand the importance of this effect, imagine, for instance, that ‘competitor 

1’ in the Fig. 2b,d is a native species competing  with an invader. At the early stages of invasion, 

we expect the native species to be abundant and the invader rare. From these initial conditions, 

the system can spend considerable time in this state, even if the ultimate asymptotic result is that 

the invader excludes the native species (as in Fig. 2b). This occurs because the invaded system 

has conditions  that are close to, but distinct from, those that would have allowed the invader 

and the native species to coexist (Fig. 2a,c). Correspondingly, if the system is only monitored 

on an intermediate time scale, this long transient dynamic may give an impression that both 

species will coexist indefinitely – a conclusion that would  obviously  be erroneous on a longer 

time scale (Fig. 2d). 
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Figure 2: Ghost attractors. Illustration of ghost attractors in (a-d) a 2-species  competition 
model and (e-h) a resource-consumer-predator model. (caption continued on next page) 
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dR 

K , dC

1 , 
dP 

1 

Figure 2 caption continued: In the first column (a,c,e,g), there are two stable invariant  sets and 
no ghost attractors. In the second column (b,d,f,h), there is a single stable invariant  set, plus a 
ghost attractor  that causes long transients.  A bifurcation (tipping point) occurs for parameter 
values intermediate to these two cases; at this bifurcation, one stable state is lost and a ghost 
attractor takes its place. (a,b) Dynamics of one of the competitors  depicted as a ball on a 
quasi-potential surface. In (a), a ball to the right of the hump at 0.07 will tend to roll toward the 
stable equilibrium (well) at 0.58, as in time series (c). In (b), the surface is relatively flat, rather 
than containing  a well, to the right of ≈ 0.1; a ball to the right will eventually roll to the stable 
equilibrium at 0 but will roll very slowly on the flat part of the surface, generating a long 
transient. There is a ghost attractor at a density around 0.3, which is visible in time series (d). 
(e-h) show the same phenomenon with more complex invariant sets: (e,g) The system shows 
bistability  where a chaotic 3-species attractor (dark blue) coexists with a stable 
consumer-resource limit cycle with no predators (light blue); dark and light trajectories in (e,g) 
differ only in their initial conditions. (f,h) For parameter values on the other side of a 
bifurcation that turns the chaotic attractor into a chaotic saddle, any trajectory will eventually 
converge to the stable limit cycle which is now the global attractor. However, convergence can 
be slow, as seen in (h), because the chaotic set is now a ghost. Models are: (a-d) ‘competitor  1’ 
is v and it competes with species u:  du  = u (1 − u) − a12unv,  dv  = γ (v (1 − v) − a21unv) dt  dt 
with a12 = 0.9, a21 = 1.1, γ = 10 and (a,c,e) n = 3; (b,f) n = 1.8; (d) n = 1.55; (e-h) 
from (37, 38), where the resource is R, consumer C , and predator P : 

dt  = R 1 −  R 
   
− xc   yc C

R 
R+R0 

dt  = xcC 
  
  yc R  
R+R0  

− 
xp yp P C − C +C0 dt  = xpP yp C

C +C0 
− with

xc = 0.4, yc = 2.009, xp = 0.08, yp = 2.876, R0 = 0.16129, C0 = 0.5 and (e,g) K = 0.99; 
(f,h) K = 1. Quasi-potentials in (a,b) were computed using (39). 
———— 

The long transient dynamics in Fig. 2 occur  because of a bifurcation  that results in the 

disappearance of a stable equilibrium.  Beyond the bifurcation, there is no longer an equilibrium 

in the vicinity of what is now a ghost, but the system may still spend a long time in this vicinity. 

In other words, the long transient occurs without  an invariant set. In contrast, the second class 

of transients we define requires the existence of an unstable equilibrium (more specifically, the 

existence of a saddle). The system approaches the saddle along a stable direction  and spends a 

long time near the saddle. We call this transient a crawl-by. 
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Figure 3: Predator-prey  dynamics with and without transients.  Predator-prey dynamics 
(a,b) without long transients, (c,d) with long transients due to crawl-bys,  and (e,f) with long 
transients due to slow-fast dynamics.  (a,c,e) The intersection of the predator’s and prey’s iso- 
clines (blue lines) produces a coexistence equilibrium.  When the prey’s predator-free carrying 
capacity, K , is beyond a threshold  (Hopf bifurcation),  the system exhibits limit cycles around 
this equilibrium. (a,b) For K just beyond this threshold, relatively small limit cycles occur and 
there are no long transients. (c,d) With an increase in K , the cycle grows in size and closely 
approaches the two saddle points at (0, 0) and (K, 0). In (d), crawl-bys  are visible at 0 and 
K . (e) When predator (slow) and prey (fast) dynamics occur on very different time scales, the 
shape of the cycle changes and more horizontal  parts of the cycle (thin arrows) proceed much 
more quickly than more vertical parts (thick arrows). (f) The corresponding time series for the 
prey shows long transients at 0 and higher prey density. The difference between (f) and (b) is 
entirely due to the slower predator dynamics in (f). All panels: for prey species N and predator 
P ,  dN N  γN P    dP νγN P 

dt  = αN   1 − K − N +h , dt   = E N +h  − mP with γ = 2.5, h = 1, ν = 0.5, m = 0.4; 
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(a,b,e,f) α = 1.5, K  = 2.2; (c) α = 1.5, K  = 10; (d) α = 0.8, K  = 15; (a–d) E  = 1; (e–f) 
E = 0.01. 
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We find examples of this type of long transient in predator-prey  systems (see Fig. 3 for 

details). Note that dynamics with similar properties are observed in more realistic and more 

complicated models (23, 29), and are corroborated by some field and laboratory data (12, 23, 29) 

(see also Fig. 1b), which  points at the generality of the suggested mechanism. 

We note here that crawl-bys and ghosts appear to be similar:  having spent some considerable 

time in the vicinity of its original position,  the system (e.g. the ball) eventually moves away. 

However,  a distinction  appears when the history of the system is taken into account. For a 

system to be influenced by a ghost, its initial state must be near the ghost (as in Fig. 2b) or more 

extreme, such that it passes by the ghost en route to another state (as in Fig. 2d). One reason 

a system’s history might place it near a ghost is if that system recently underwent a change in 

conditions  that caused the ghost attractor to appear. Individual  crawl-bys can also occur if the 

history of the system places it on track to closely  approach a saddle, but crawl-bys may also 

repeat in perpetuity,  as in Fig. 3c,d. This occurs because the saddles that give rise to crawl- 

bys are always attracting from some directions while ghosts may or may not have attracting 

directions. 

The mechanisms described above that cause long transients are not restricted to simple dy- 

namics  such as steady states or limit cycles. Similar effects can be seen in cases of chaotic 

dynamics. An illuminating  example is given by a resource-consumer-predator  system (37, 38). 

In a certain  parameter range, this system exhibits chaotic dynamics (see the chaotic attractor 

(dark blue) in Fig.2e,g).  However, a change in parameter values (e.g. an increase in the resource 

species’ carrying capacity) can bring the system to a bifurcation  at which  the strange attractor 

disappears (38). Beyond this tipping point, the chaotic dynamic is not sustainable any more; it 

becomes transient and eventually  converges to a stable limit-cycle periodical oscillations (Fig. 

2f,h). However, this convergence is slow, so that the dynamics remain essentially chaotic over 

a long time. Similar dynamics  are observed in time-discrete systems (15). This behavior is 
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apparently similar to the crawl-by  near a saddle point, and indeed the term “chaotic saddle” is 

used in the physics literature to refer to a non-attracting  dynamical invariant set responsible for 

transient chaos (40, 41) (in the dynamical systems theory, it is also called a chaotic supertran- 

sient). More generally,  a common dynamical  mechanism for transient chaos is crises (40), a 

type of global bifurcation that changes the nature of the underlying chaotic invariant set. 

An important point is that one property common for long transients caused by ghost attrac- 

tors and chaotic crawl-bys is that the system is just beyond the tipping point. So if a parameter 

controlling  a system has pushed the system just past a tipping point there may not be a sudden 

change, but instead a long transient may result. 

Slow-fast systems 

Much of the literature on tipping points considers multiple  time scales: fast intrinsic dynamics 

affected by a slow-changing  external factor. However, some systems have multiple  time scales 

within their intrinsic dynamics.  This can also lead to transients,  as in a prey-predator  system 

written in its general form: 

dN (t) 
dt 

= f (N, P, E), 
dP (t) 

dt 
= Eg(N, P, E), (1) 

where E  « 1 is a nonnegative dimensionless parameter that quantifies the difference between 

orders of magnitude for the time scales of prey (N ) and predator (P ) (42). Such a difference  is 

common in resource-consumer interactions. For example, univoltine  insect herbivores that feed 

on trees have much faster population dynamics than their hosts. Reproduction  and mortality 

rates of zooplankton  are typically 10-100 times lower than the corresponding rates of phyto- 

plankton on which the zooplankton feed. Similar differences exist for birds and insects, foxes 

and voles, etc. 

Viewed on the slow time scale, the prey population evolves quickly and is always at its 

equilibrium with the predator  population  acting  essentially  as a slowly changing parameter. 
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On the slow time scale the predator population  changes with the dynamics determined by the 

predator equation with the prey assumed to be at an equilibrium. The net result is alternation 

between long periods of relative  stasis and periods of rapid change.  An almost steady state 

dynamic of prey at a very low density accompanied  by a gradual decrease in the predator density 

(as shown by the left-hand side of the cycle in Fig. 3e and each trough in Fig. 3f) can go on for 

hundreds of generations of prey before suddenly changing to an outbreak in the prey population. 

The next phase is a slow, gradual decrease in the prey population along with a slow increase 

in the predator population (the right-hand side of the cycle, and peaks in the prey time series) 

before accelerating to a fast drop in the prey density. The difference between this dynamic and 

the transients described in the previous section, in which there is only one intrinsic time scale, 

is whether the slowly changing variable is viewed as internal or external to the system. This is 

important,  as slowly changing variables are often considered the result of human actions or a 

changing environment; they could alternatively be viewed as part of the system itself. 

Transients in high-dimensional  systems 

Most systems outside  a laboratory  or experimental  environment  are very high dimensional, 

due to the presence of space or time delays which greatly increase the potential for transients, 

including very long transients.  In the examples considered so far, all the processes or forces 

shaping the dynamics  are instantaneous and local in space.  In real world systems, it is not 

always so. 

Time delays are a common property  in ecological dynamics resulting from processes and 

mechanisms such as nutrient  recycling  (43, 44), maternal effects (45, 46), or development in 

stage-structured populations.  Time delays were shown to lead to the emergence of long tran- 

sients in a few modeling studies (16, 47), and there is a certain similarity between delay-caused 

long transients and those caused by ghost attractors. Systems with time delay are different from 
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instantaneous systems not only because of different processes taken into account but also from 

the viewpoint of dynamical  systems theory as the phase space argument and the corresponding 

analysis become irrelevant. In a general case, even a low-dimensional (e.g. two-species) system 

with delay is equivalent to an infinite-dimensional  instantaneous system (48, 49). Altogether, it 

suggests that time-delay  is a separate mechanism that can result in long transient dynamics. 

Spatiotemporal dynamical systems are necessarily high-dimensional,  and the transient time 

can increase dramatically  with the system size. An early study (5) reported extremely long 

transients in such systems (Fig. 4a). In systems described by a coupled map lattice, the transient 

time can increase exponentially  with the system size or faster (50), leading to supertransients 

(51). 

Effect of noise 

Until now, we have considered long transient dynamics in deterministic settings, absent noise or 

stochasticity. In natural systems, noise and random disturbances are inevitable  and may create 

or extend transients. 

Noise may affect a system with existing long transient dynamics caused, for example, by 

a ghost or crawl-by. In transient dynamics caused by a crawl-by,  such as the limit cycles of a 

predator-prey system (Fig. 3c,d), small populations very close to the saddle at (0,0) are vulner- 

able to stochastic extinctions,  where random events may move the system to one of the saddle 

points, causing either the prey or predator population (or both) to go extinct.  Stochasticity in 

the system near the saddle also has the potential to dramatically alter the length of the transient 

period, widening the distribution of resulting durations of the transient period or times to con- 

vergence  (52). Stochasticity in the system near a ghost attractor also widens the distribution 

of transient  periods,  depending  on the steepness of the surface around the ghost. Noise that is 

skewed ‘uphill’ will lengthen the transient, dooming the ball to repeatedly roll nearer the ghost 
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(Fig. 2b). Noise can also induce sustained transients or oscillations in a system that - without 

noise - would exhibit damped oscillations to an equilibrium (53, 54, see Fig. 4b). Noise can also 

provide a mechanism for transient dynamics of a system to become long lived (Figure 4b). For 

systems with transient chaos, the interaction with stochasticity can be even more complex (51). 
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Figure 4: Examples of additional  mechanisms leading to long transients.  (a) Spatial structure in 
a simple population  model leads to very long transients when the local population growth rate is high 
(from (5); local dynamics are governed by Nt+1 = Nt exp(r(1 − Nt)) with r = 3.5; the total population 
density summed across all localities is plotted here). (b) For these parameter values (α = 1.5, K = 
1.5, γ = 2.5, h = 1, ν = 0.5, m = 0.4, E  = 1), the deterministic predator-prey model from Fig. 3 
exhibits short transient cycles, then converges to a stable equilibrium point (blue curve). However, when 
stochasticity is added, the same model will exhibit sustained cycles with approximately the same period 
(red line; here, stochasticity  was incorporated  by representing the prey’s intrinsic growth rate, α, as a 
random variable with mean 1.5). 
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Table 2: Overview of long transient (LT) classification and mechanisms. 
Type of LT Relationship 

to invariant 
set 

Relationship to 
bifurcation 

Dynamics 
mimicked 
by LT 

Possibility 
of recurrent 
LTs? 

Biological 
example 

ghost (Fig. 2) no invariant 
set 

occurs past a 
bifurcation where 
stable equilibrium 
is lost 

equilibrium, 
cycles, chaos 

no forage 
fish (12) 
(Fig. 1b) 

crawl-by 
(Fig. 3c,d) 

caused by 
saddle-type 
invariant set 

none necessary equilibrium, 
cycles, chaos 

yes phytoplankton- 
grazer 
models (29) 

slow-fast 
systems 
(Fig. 3e,f) 

none 
necessary 

multiple 
time-scales 

periodic or 
aperiodic 
cycles 

yes, if 
invariant 
set(s) 
present 

univoltine 
insects (14) 
(Fig. 1c) 

high 
dimension 
(e.g. time 
delays, space 
Fig. 4a) 

none 
necessary 

none necessary equilibrium, 
cycles, chaos 

yes chemostat 
microbial 
communities 
(32) 

stochasticity 
(Fig. 4b) 

if invariant set 
present: 

none necessary aperiodic 
cycles, chaos 

yes Cancer 
crabs (28) 

if invariant set 
absent: 

past a bifurcation 
where cycles/ 
chaos are lost 

quasi- 
periodic 
cycles 
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Transients in the real world 

The systematic classification of long transient types and mechanisms conducted here provides 

a framework  for recognizing  and understanding these dynamics  in observed natural systems 

(Tables 1 and 2). Note that our classification  does not include non-autonomous systems, not 

because long transients do not occur in non-autonomous  systems, but because their classifica- 

tion and discussion warrants treatment beyond the scope of the present review. In this section 

we describe how empirically  observed behavior may be the result of long transients in a wide 

variety of situations and through examples emphasize implications for management. 

An empirical example of long transients due to a ghost attractor  (similar to that presented 

in Fig. 2) is the well-documented switch from a macrophyte-dominated  state to a turbid water 

state in freshwater lakes in the Netherlands (24).  The study tracks about 70 shallow lakes 

after a water drawdown that stimulated macrophyte growth, temporarily  creating a macrophyte- 

dominated, clear water attracting state. When water levels subsequently rose, some of the lakes 

returned immediately to a turbid  state, while others lingered for over 4 years in the clear water 

state that was no longer stable. In other words, the physical modification to the system caused 

by the changes in water level resulted in the formation of a clear water ghost attractor  that 

slowed movement towards the turbid water attractor, sometimes quite dramatically.  A similar 

mechanism of long transients due to ghost attractors may underlie the transition from coral to 

macroalgal dominance reported for Caribbean coral reefs (25, 26); the shift from a forage fish 

state to a state dominated  by large-bodied benthic fish species in the Scotian Shelf of Canada’s 

east coast (12) and the shifts between populations of fish and invertebrates in watersheds in 

western North Carolina after habitat restoration (34). 

Long transients due to crawling  past a saddle are often observed in planktonic ecosystems, 

in particular in the interactions between phytoplankton  and zooplankton, creating oscillations 
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in which periods of high population densities alternate with long periods of low densities (29). 

Other examples of crawl-bys are given by patterns of cyclic succession reported in a number 

of ecosystems including  competition  in communities of sideblotched lizards (55), coral reef 

invertebrates (56), and heather-moss-bearberry  succession (57). In each of these systems,  a 

long dominance of one species is observed before its displacement by the next competitor  in the 

cycle. 

Empirical examples of long transients related to slow-fast  systems include  a number of 

observations of univoltine  insect herbivores that feed on trees (14) (Fig. 1c). At short time 

scales of a few insect generations the tree density is approximately constant. However, on 

longer time scales, the impact of the growing  insect population may become high enough to 

cause a suddenly collapse in the quantity or quality of foliage, resulting in a regime shift. 

Real ecosystems are often disturbed by noise which can trigger patterns of long transients. 

A notable example includes the population dynamics of Dungeness crab, Cancer magister, in 

eight USA west coast ports (28). By combining data analysis with modeling fitted to data it was 

shown that large amplitude transient oscillations followed by relaxation to an equilibrium occur 

due to stochastic perturbations of a deterministic  system with a stable state. Another  example 

is given by an empirical study on Tribolium  (58) in which random perturbations of cyclic popu- 

lation dynamics result in chaotic-like behavior. Seasonal dynamics create a particular  structure 

of environmental stochasticity. For example, in plankton communities in temperate lakes, each 

cold season “resets”  the initial conditions for the warm, growing  season.  This prevents the 

system from reaching equilibrium  and thereby allows for high biodiversity transients to be the 

norm (29, 59). 

High dimensional systems may be likely to possess long transients.  For example,  slow suc- 

cession of patterns of biodiversity is found in experimental microbial communities in a chemo- 

stat (31). The precise mechanism of these observed long transients is still unclear due to the 
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high complexity of systems containing  dozens of interacting  species and the existence of several 

time scales.  Similarly, long-term existence of a large number of alternative transient states is 

seen in the restoration of agricultural fields (32), which is also characterized by a high degree 

of complexity. 

Implication for management 

The existence, identification,  and forecasting of long transient dynamics in ecosystems have 

substantial implications  for management of ecosystems.   Broadly speaking, management is 

aimed at maintaining or creating  a desirable state of the ecosystem.  The challenge is in pre- 

dicting system behavior, given dynamical regime uncertainty. If a system transition  is detected, 

an important question is what has caused it, and how long can it be expected to last? What a 

study of long transients reveals is that a system may shift in ways that are not simply tracking 

underlying  conditions,  so a focus on asymptotic behavior without considering transients may 

give misleading answers. 

In some cases, mechanistic  mathematical  models that are constructed from first principles, 

fitted to empirical  data, and explored within realistic parameter ranges can help identify whether 

an ecosystem is currently  experiencing transient dynamics. For example, this was done to 

predict the long transients in the extinction debt of butterflies in the UK  (60). In other cases, 

when it is difficult to distinguish  whether observed dynamics are transient or at equilibrium, 

models of both possibilities  can be developed to test the sensitivity of proposed management 

strategies to the model assumptions. 

Incorporating considerations of transient system behavior into management also requires 

shifting  perspectives about the relevant timescale. A fundamental issue is a mismatch between 

relevant ecological (transient) timescales, and management timescales. Implementation of man- 

agement plans where long transients are at play will require adjustments to accommodate the 



transient changes in dynamical regime. 

Acknowledging transient system behavior affects management assumptions, practices, and 

interventions.  In addition, detecting long transients, and incorporating  risk analysis for long 

transients, requires the development and application of new tools to reflect this change in think- 

ing. A full treatment of the management consequences and opportunities  presented by long 

transients requires further attention beyond the present review . 

Implications and Future Directions 

Dramatic  changes in ecological dynamics through time represent both great challenges and op- 

portunities for unraveling  the forces that regulate ecosystems functioning.  Much recent work in 

this vein has focused on the concept of regime shifts as a rapid response of dynamics to slow 

changes in environmental  conditions  (such as climate change, habitat destruction, resource ex- 

ploitation, etc). However,  there are many examples of situations and systems that do not fit 

into this classical framework; in particular,  a shift can suddenly occur in a seemingly constant 

environment.  The existence of long transients explains how it may happen: as we have shown 

here, the ecosystem dynamics past a tipping  point can be very slow, sometimes indistinguish- 

able from the steady state for hundreds of generations (cf. “ghosts”). Long transient dynamics 

can also be responsible for regime shifts in the absence of any associated tipping point, thus 

significantly  broadening the regime shift paradigm. 

The traditional approaches in ecological  sciences are usually based on asymptotic dynamics. 

Here we have shown that this focus is often insufficient and sometimes irrelevant,  and needs to 

be reconsidered in a systematic  way. Long transients provide  a new dimension  in our under- 

standing of observed changes in ecological dynamics. Although the existence of long transients 

has been previously  acknowledged  both in theoretical and empirical  studies, any systematic 

approach to this phenomenon  has been lacking. We bridge this gap by developing  a simple 

23 
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classification of different types of long transient dynamics and linking empirical observations 

to simple prototypical models. As one important result of our investigation, we have arrived at 

the conclusion that both identifying long transients and understanding their implications (e.g. 

for ecosystem management) requires coupling  across several ecologically relevant time scales. 

Identifying from observations whether a natural ecosystem is close to an equilibrium  or is 

experiencing long transient behavior is a major challenge.  Perhaps the easiest case is a situation 

where the population  density shows a clear disappearance of periodic cycles of voles, lemmings 

and grouse in Europe (27) (see Fig. 1a), or the slow steady population decline in the extinction 

debt phenomena (33). Less evident is the situation where the dynamics do not show  a well 

pronounced trend. In this case, one can compare characteristics of the observed community  with 

those thought to represent equilibrium systems, such as a relatively  undisturbed community  of 

a similar type or the same community in the past. These ideas have been implemented  to reveal 

an extinction  debt caused by habitat fragmentation, by comparing the current  species area- 

richness relation to historical records (33) and by verifying whether the species-area relation 

holds (61). As an alternative approach, recently developed techniques make it possible to build 

an ecological model directly  from a time series by reconstructing model equations from data. A 

particularly  promising new approach is based on compressive sensing using a powerful  sparse 

optimization framework (62–65). Once a model  is available, its properties can be analyzed, 

in particular to reveal long transients.  However, we argue that any essential progress in this 

area is only likely to be achieved by combining various methods borrowed from data mining, 

stochastic modeling and bifurcation  theory. Existing methods to identify  transients in empirical 

data are not always reliable and can result in either overlooking the approaching regime shift or 

in false alarms, which can be very costly. This poses significant new challenges for ecologists, 

mathematicians and data analysts. 

Acknowledging long term transient behavior drastically affects our perception of ecological 
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dynamics. First, sudden shifts in dynamics may occur in the absence of underlying parameter 

changes, i.e. in the absence of the tipping point. Second, analysis of ecological processes must 

be done across a few relevant timescales rather than focusing only on asymptotic behavior. In 

particular,  one should take into account both fast and slow variables and feedbacks.  Third, 

stochasticity may play a key  role in generating long transients, in particular by bringing an 

ecosystem to the vicinity of an unstable equilibrium  (causing a crawl-by) or a ghost. Finally,  in 

the context of ecosystem management practices, it is well known that sometimes long transients 

may offer a window of response time which would not be available for systems with rapid 

switches between stable states  (66). On the other hand, transients can add more uncertainty 

to anticipation of regime shifts since such a shift can occur without a noticeable  change of 

parameters. 
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