Translating Virtual Prey-Predator Interaction to Real-World Robotic Environments: Enabling Multimodal Sensing and Evolutionary Dynamics
journal contribution
posted on 2024-01-04, 17:05authored byXuelong Sun, Cheng Hu, Tian Liu, Shigang Yue, Jigen Peng, Qinbing Fu
Prey-predator interactions play a pivotal role in elucidating the evolution and adaptation of various organism’s traits. Numerous approaches have been employed to study the dynamics of prey-predator interaction systems, with agent-based methodologies gaining popularity. However, existing agent-based models are limited in their ability to handle multi-modal interactions, which are believed to be crucial for understanding living organisms. Conversely, prevailing prey-predator integration studies often rely on mathematical models and computer simulations, neglecting real-world constraints and noise. These elusive attributes, challenging to model, can lead to emergent behaviors and embodied intelligence. To bridge these gaps, our study designs and implements a prey-predator interaction scenario that incorporates visual and olfactory sensory cues not only in computer simulations but also in a real multi-robot system. Observed emergent spatial-temporal dynamics demonstrate successful transitioning of investigating prey-predator interactions from virtual simulations to the tangible world. It highlights the potential of multi-robotics approaches for studying prey-predator interactions and lays the groundwork for future investigations involving multi-modal sensory processing while considering real-world constraints.
History
Author affiliation
School of Computing and Mathematical Sciences, University of Leicester