University of Leicester
Browse

Tropical Peatland Hydrology Simulated With a Global Land Surface Model

Download (5.67 MB)
journal contribution
posted on 2022-07-07, 09:34 authored by S. Apers, G. J. M. De Lannoy, A. J. Baird, A. R. Cobb, G. C. Dargie, J. Pasquel, A. Gruber, A. Hastie, H. Hidayat, T. Hirano, A. M. Hoyt, A. J. Jovani-Sancho, A. Katimon, A. Kurnain, R. D. Koster, M. Lampela, S. P. P. Mahanama, L. Melling, S. E. Page, R. H. Reichle, M. Taufik, J. Vanderborght, M. Bechtold
Tropical peatlands are among the most carbon-dense ecosystems on Earth, and their water storage dynamics strongly control these carbon stocks. The hydrological functioning of tropical peatlands differs from that of northern peatlands, which has not yet been accounted for in global land surface models (LSMs). Here, we integrated tropical peat-specific hydrology modules into a global LSM for the first time, by utilizing the peatland-specific model structure adaptation (PEATCLSM) of the NASA Catchment Land Surface Model (CLSM). We developed literature-based parameter sets for natural (PEATCLSMTrop,Nat) and drained (PEATCLSMTrop,Drain) tropical peatlands. Simulations with PEATCLSMTrop,Nat were compared against those with the default CLSM version and the northern version of PEATCLSM (PEATCLSMNorth,Nat) with tropical vegetation input. All simulations were forced with global meteorological reanalysis input data for the major tropical peatland regions in Central and South America, the Congo Basin, and Southeast Asia. The evaluation against a unique and extensive data set of in situ water level and eddy covariance-derived evapotranspiration showed an overall improvement in bias and correlation compared to the default CLSM version. Over Southeast Asia, an additional simulation with PEATCLSMTrop,Drain was run to address the large fraction of drained tropical peatlands in this region. PEATCLSMTrop,Drain outperformed CLSM, PEATCLSMNorth,Nat, and PEATCLSMTrop,Nat over drained sites. Despite the overall improvements of PEATCLSMTrop,Nat over CLSM, there are strong differences in performance between the three study regions. We attribute these performance differences to regional differences in accuracy of meteorological forcing data, and differences in peatland hydrologic response that are not yet captured by our model.

Funding

KU Leuven (Katholieke Universiteit Leuven). Grant Number: C14/21/057 Fonds Wetenschappelijk Onderzoek (FWO). Grant Numbers: G095729N, 1224320N, 1530019N Flemish Government National Research Foundation Singapore. Grant Number: NRF2019-ITC001-001 Natural Environment Research Council. Grant Numbers: NE/R016860/1, NE/R000751/1 JSPS KAKENHI. Grant Number: JP19H05666 United Kingdom Research and Innovation Biotechnology and Biological Sciences Research Council. Grant Number: BB/P023533/1 Ministry of Research, Technology, and Higher Education of Indonesia European Union NASA

History

Citation

Journal of Advances in Modeling Earth Systems, 14, e2021MS002784

Author affiliation

School of Geography, Geology and the Environment

Version

  • VoR (Version of Record)

Published in

Journal of Advances in Modelling Earth Systems

Volume

14

Issue

3

Publisher

Wiley Open Access

issn

1942-2466

eissn

1942-2466

Acceptance date

2022-02-02

Copyright date

2022

Available date

2022-07-07

Language

English