posted on 2016-06-14, 12:32authored byNick M. W. Roberts, Richard J. Walker
Constraining the timing of brittle faulting is critical in understanding crustal deformation and fluid flow, but many regional-scale fault systems lack readily available techniques to provide absolute chronological information. Calcite mineralization occurs in crustal faults in many geological settings and can be suitable for U-Pb geochronology. This application has remained underutilized because traditional bulk dissolution techniques require uncommonly high U concentration. Because U and Pb are distributed heterogeneously throughout calcite crystals, high-spatial-resolution sampling techniques can target domains with high U and variable U/Pb ratios. Here we present a novel application of in-situ laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) to basaltic fault rock geochronology in the Faroe Islands, northeast Atlantic margin. Faults that are kinematically linked to deformation associated with continental break-up were targeted. Acquired ages for fault events range from mid-Eocene to mid-Miocene and are therefore consistently younger than the regional early Eocene onset of ocean spreading, highlighting protracted brittle deformation within the newly developed continental margin. Calcite geochronology from LA-ICP-MS U-Pb analysis represents an important and novel method to constrain the absolute timing of fault and fluid-flow events.
History
Citation
Geology (Boulder), 2016, 44 (7), pp. 531-534
Author affiliation
/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Geology
The file associated with this record is under a 12-month embargo from publication in accordance with the publisher's self-archiving policy. The full text may be available through the publisher links provided above.