Paper_v4_ICAE.pdf (2.66 MB)
Unilateral sensorineural hearing loss identification based on double-density dual-tree complex wavelet transform and multinomial logistic regression
journal contribution
posted on 2020-03-26, 15:36 authored by Shui-Hua Wang, Yu-Dong Zhang, Ming Yang, Bin Liu, Javier Ramirez, Juan M. GorrizAIM: Unilateral sensorineural hearing loss is a brain disease, which causes slight morphology changes within brain structure. Traditional manual method may ignore this change. METHOD: In this work, we developed a novel method, based on the double-density dual-tree complex (DDDTCWT), and radial basis function kernel principal component analysis (RKPCA) and multinomial logistic regression (MLR) for the magnetic resonance imaging scanning. We first used DDDTCWT to extract features. Afterwards, we used RKPCA to reduce feature dimensionalities. Finally, MLR was employed to be the classifier. RESULT: The 10 times of 10-fold stratified cross validation showed our method achieved an overall accuracy of 96.44 ± 0.88%. The sensitivities of detecting left-sided sensorineural hearing loss, right-sided sensorineural hearing loss, and healthy controls were 96.67 ± 2.72%, 96.67 ± 3.51%, and 96.00 ± 4.10%, respectively. CONCLUSION: Our method performed better than both raw and improved AlexNet, and eight state-of-the-art methods via a stringent statistical 10 × 10-fold stratified cross validation. The MLR gives better classification performance than decision tree, support vector machine, and back-propagation neural network.
History
Citation
Integrated Computer-Aided Engineering, vol. 26, no. 4, pp. 411-426, 2019Author affiliation
Department of InformaticsVersion
- AM (Accepted Manuscript)
Published in
INTEGRATED COMPUTER-AIDED ENGINEERINGVolume
26Issue
4Pagination
411 - 426Publisher
IOS PRESSissn
1069-2509eissn
1875-8835Copyright date
2019Available date
2019-09-11Publisher DOI
Publisher version
https://content.iospress.com/articles/integrated-computer-aided-engineering/ica190605Language
EnglishUsage metrics
Categories
Keywords
Science & TechnologyTechnologyComputer Science, Artificial IntelligenceComputer Science, Interdisciplinary ApplicationsEngineering, MultidisciplinaryComputer ScienceEngineeringUnilateral sensorineural hearing lossdual-tree complex wavelet transformkernel principal component analysismultinomial logistic regressiondouble-density dual-tree complex wavelet transformmagnetic resonance imagingalexNetPRINCIPAL COMPONENT ANALYSISPATHOLOGICAL BRAIN DETECTIONSUPPORT VECTOR MACHINENEURAL-NETWORKROBUSTOPTIMIZATIONCLASSIFICATIONREGISTRATIONMETHODOLOGYUNIT