University of Leicester
Browse
- No file added yet -

Use of chimeras, point mutants, and molecular modeling to map the antagonist-binding site of 4,4',4″,4‴-(carbonylbis-(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakisbenzene-1,3-disulfonic acid (NF449) at P2X1 receptors for ATP.

Download (2.87 MB)
journal contribution
posted on 2015-05-12, 15:11 authored by Louise K. Farmer, Ralf Schmid, Richard J. Evans
P2X receptor subtype-selective antagonists are promising candidates for treatment of a range of pathophysiological conditions. However, in contrast to high resolution structural understanding of agonist action in the receptors, comparatively little is known about the molecular basis of antagonist binding. We have generated chimeras and point mutations in the extracellular ligand-binding loop of the human P2X1 receptor, which is inhibited by NF449, suramin, and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate, with residues from the rat P2X4 receptor, which is insensitive to these antagonists. There was little or no effect on sensitivity to suramin and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate in chimeric P2X1/4 receptors, indicating that a significant number of residues required for binding of these antagonists are present in the P2X4 receptor. Sensitivity to the P2X1 receptor-selective antagonist NF449 was reduced by ∼60- and ∼135-fold in chimeras replacing the cysteine-rich head, and the dorsal fin region below it in the adjacent subunit, respectively. Point mutants identified the importance of four positively charged residues at the base of the cysteine-rich head and two variant residues in the dorsal fin for high affinity NF449 binding. These six residues were used as the starting area for molecular docking. The four best potential NF449-binding poses were then discriminated by correspondence with the mutagenesis data and an additional mutant to validate the binding of one lobe of NF449 within the core conserved ATP-binding pocket and the other lobes coordinated by positive charge on the cysteine-rich head region and residues in the adjacent dorsal fin.

Funding

The work was supported by a PhD studentship to LKF from the British Heart Foundation.

History

Citation

Journal of Biological Chemistry, 2015, 290 (3), pp. 1559-1569

Author affiliation

/Organisation/COLLEGE OF MEDICINE, BIOLOGICAL SCIENCES AND PSYCHOLOGY/School of Biological Sciences/Department of Cell Physiology and Pharmacology

Version

  • AM (Accepted Manuscript)

Published in

Journal of Biological Chemistry

Publisher

American Society for Biochemistry and Molecular Biology

issn

0021-9258

eissn

1083-351X

Copyright date

2015

Available date

2016-01-16

Publisher version

http://www.jbc.org/content/290/3/1559

Notes

PMCID: PMC4340402

Language

en