University of Leicester
Browse
- No file added yet -

Using multimodal biometrics, data hiding and encryption for secure healthcare imaging system

Download (7.14 MB)
journal contribution
posted on 2024-08-02, 15:38 authored by KN SIngh, N Baranwal, AK Singh, AK Agrawal, Huiyu Zhou

In  this  digital  era,  images  are  the  most  vital  in-formation  carrier  used  for  healthcare  communication  and  en-tertainment.  However,  the  increasing  use  of  images  in  severalapplications also poses a risk of their unauthorised usage or mod-ification  without  proper  attribution  to  the  owner.  To  overcomethis issue while ensuring one-time password (OTP)–based systemauthentication,  this  study  designed  a  highly  secure  healthcareimaging  system  with  multimodal  biometrics,  data  hiding  andencryption in a deep learning environment. First, we segmenteda   medical   image   via   a   customised,   deep   neural   network   tolocate the lesion and non-lesion areas.  Next, the lesion part wasembedded into the non-lesion part via least significant bit (LSB)substitution and timestamp. Furthermore, the marked non-lesionand  lesion  parts  were  combined  to  generate  the  marked  image.Second,  encoded  multimodal  biometric  features,  i.e.  face  andiris,  and  a  novel  2D  chaotic  system  were  used  to  encrypt  themarked  image  before  transmission  over  the  network.  Throughsimulation  findings  on  security  and  accuracy  of  segmentationand  feature  extraction  design,  we  demonstrated  the  feasibilityand  effectiveness  of  our  proposed  secure  system,  highlightingtheir  superior  performance  compared  to  existing  techniques.

Funding

This work is supported by IES212111 - Interna- tional Exchanges 2021Round 2, dt. 28 Feb 2022, under Royal Society, UK.

History

Author affiliation

College of Science & Engineering Comp' & Math' Sciences

Version

  • AM (Accepted Manuscript)

Published in

IEEE Transactions on Consumer Electronics

Publisher

Institute of Electrical and Electronics Engineers

issn

0098-3063

eissn

1558-4127

Copyright date

2024

Available date

2024-08-02

Publisher DOI

Language

en

Deposited by

Professor Huiyu Zhou

Deposit date

2024-08-01

Usage metrics

    University of Leicester Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC