University of Leicester
Browse

VEGF-B-Neuropilin-1 signaling is spatiotemporally indispensable for vascular and neuronal development in zebrafish

Download (2.79 MB)
journal contribution
posted on 2016-02-01, 09:26 authored by L. D. Jensen, M. Nakamura, L. Bräutigam, X. Li, Y. Liu, Nilesh Jayantilal Samani, Yihai Cao
Physiological functions of vascular endothelial growth factor (VEGF)-B remain an enigma, and deletion of the Vegfb gene in mice lacks an overt phenotype. Here we show that knockdown of Vegfba, but not Vegfbb, in zebrafish embryos by specific morpholinos produced a lethal phenotype owing to vascular and neuronal defects in the brain. Vegfba morpholinos also markedly prevented development of hyaloid vasculatures in the retina, but had little effects on peripheral vascular development. Consistent with phenotypic defects, Vegfba, but not Vegfaa, mRNA was primarily expressed in the brain of developing zebrafish embryos. Interestingly, in situ detection of Neuropilin1 (Nrp1) mRNA showed an overlapping expression pattern with Vegfba, and knockdown of Nrp1 produced a nearly identically lethal phenotype as Vegfba knockdown. Furthermore, zebrafish VEGF-Ba protein directly bound to NRP1. Importantly, gain-of-function by exogenous delivery of mRNAs coding for NRP1-binding ligands VEGF-B or VEGF-A to the zebrafish embryos rescued the lethal phenotype by normalizing vascular development. Similarly, exposure of zebrafish embryos to hypoxia also rescued the Vegfba morpholino-induced vascular defects in the brain by increasing VEGF-A expression. Independent evidence of VEGF-A gain-of-function was provided by using a functionally defective Vhl-mutant zebrafish strain, which again rescued the Vegfba morpholino-induced vascular defects. These findings show that VEGF-B is spatiotemporally required for vascular development in zebrafish embryos and that NRP1, but not VEGFR1, mediates the essential signaling.

History

Citation

Proceedings of the National Academy of Sciences USA, 2015, 112 (44), pp. E5944-E5953

Author affiliation

/Organisation/COLLEGE OF MEDICINE, BIOLOGICAL SCIENCES AND PSYCHOLOGY/School of Medicine/Department of Cardiovascular Sciences

Version

  • VoR (Version of Record)

Published in

Proceedings of the National Academy of Sciences USA

Publisher

National Academy of Sciences

eissn

1091-6490

Acceptance date

2015-09-28

Copyright date

2015

Available date

2016-02-01

Publisher version

http://www.pnas.org/content/112/44/E5944

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC