University of Leicester
Browse

Variable glacier response to atmospheric warming, northern Antarctic Peninsula, 1988-2009

Download (4.24 MB)
journal contribution
posted on 2013-11-21, 12:16 authored by B.J. Davies, J.L. Carrivick, N.F. Glasser, M.J. Hambrey, John L. Smellie
The northern Antarctic Peninsula has recently exhibited ice-shelf disintegration, glacier recession and acceleration. However, the dynamic response of land-terminating, ice-shelf tributary and tidewater glaciers has not yet been quantified or assessed for variability, and there are sparse data for glacier classification, morphology, area, length or altitude. This paper firstly classifies the area, length, altitude, slope, aspect, geomorphology, type and hypsometry of 194 glaciers on Trinity Peninsula, Vega Island and James Ross Island in 2009 AD. Secondly, this paper documents glacier change 1988-2009. In 2009, the glacierised area was 8140±262 km2. From 1988-2001, 90% of glaciers receded, and from 2001-2009, 79% receded. This equates to an area change of -4.4% for Trinity Peninsula eastern coast glaciers, -0.6% for western coast glaciers, and -35.0% for ice-shelf tributary glaciers from 1988-2001. Tidewater glaciers on the drier, cooler eastern Trinity Peninsula experienced fastest shrinkage from 1988-2001, with limited frontal change after 2001. Glaciers on the western Trinity Peninsula shrank less than those on the east. Land-terminating glaciers on James Ross Island shrank fastest in the period 1988-2001. This east-west difference is largely a result of orographic temperature and precipitation gradients across the Antarctic Peninsula, with warming temperatures affecting the precipitation-starved glaciers on the eastern coast more than on the western coast. Reduced shrinkage on the western Peninsula may be a result of higher snowfall, perhaps in conjunction with the fact that these glaciers are mostly grounded. Rates of area loss on the eastern side of Trinity Peninsula are slowing, which we attribute to the floating ice tongues receding into the fjords and reaching a new dynamic equilibrium. The rapid shrinkage of tidewater glaciers on James Ross Island is likely to continue because of their low elevations and flat profiles. In contrast, the higher and steeper tidewater glaciers on the eastern Antarctic Peninsula will attain more stable frontal positions after low-lying ablation areas are removed, reaching equilibrium more quickly.

History

Citation

Cryosphere, 2012, 6 (5), pp. 1031-1048

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Geology

Version

  • VoR (Version of Record)

Published in

Cryosphere

Publisher

Copernicus Publications on behalf of the European Geosciences Union

issn

1994-0416

eissn

1994-0424

Copyright date

2012

Available date

2013-11-21

Publisher version

http://www.the-cryosphere.net/6/1031/2012/tc-6-1031-2012.html

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC