Visual Field Deficits in Albinism in Comparison to Idiopathic Infantile Nystagmus
Purpose: This is the first systematic comparison of visual field (VF) deficits in people with albinism (PwA) and idiopathic infantile nystagmus (PwIIN) using static perimetry. We also compare best-corrected visual acuity (BCVA) and optical coherence tomography measures of the fovea, parafovea, and circumpapillary retinal nerve fiber layer in PwA.
Methods: VF testing was performed on 62 PwA and 36 PwIIN using a Humphrey Field Analyzer (SITA FAST 24-2). Mean detection thresholds for each eye were calculated, along with quadrants and central measures. Retinal layers were manually segmented in the macular region.
Results: Mean detection thresholds were significantly lower than normative values for PwA (−3.10 ± 1.67 dB, P << 0.0001) and PwIIN (−1.70 ± 1.54 dB, P < 0.0001). Mean detection thresholds were significantly lower in PwA compared to PwIIN (P < 0.0001) and significantly worse for left compared to right eyes in PwA (P = 0.0002) but not in PwIIN (P = 0.37). In PwA, the superior nasal VF was significantly worse than other quadrants (P < 0.05). PwIIN appeared to show a mild relative arcuate scotoma. In PwA, central detection thresholds were correlated with foveal changes in the inner and outer retina. VF was strongly correlated to BCVA in both groups.
Conclusions: Clear peripheral and central VF deficits exist in PwA and PwIIN, and static VF results need to be interpreted with caution clinically. Since PwA exhibit considerably lower detection thresholds compared to PwIIN, VF defects are unlikely to be due to nystagmus in PwA. In addition to horizontal VF asymmetry, PwA exhibit both vertical and interocular asymmetries, which needs further exploration.
Funding
Ultra-high resolution optical coherence tomography (UHR-SD OCT) in infants and children: characterisation of normal and abnormal foveal development
Medical Research Council
Find out more...Supported by Ulverscroft Foundation
History
Author affiliation
School of Psychology and Vision Science, University of LeicesterVersion
- VoR (Version of Record)