University of Leicester
Browse
- No file added yet -

Voxel-wise quantification of myocardial blood flow with cardiovascular magnetic resonance: effect of variations in methodology and validation with positron emission tomography

Download (1.55 MB)
journal contribution
posted on 2015-07-10, 10:55 authored by C. A. Miller, J. H. Naish, M. P. Ainslie, C. Tonge, D. Tout, P. Arumugam, A. Banerji, R. M. Egdell, D. Clark, P. Weale, Christopher D. Steadman, Gerry P. McCann, S. G. Ray, G. J. M. Parker, M. Schmitt
Background: Quantitative assessment of myocardial blood flow (MBF) from cardiovascular magnetic resonance (CMR) perfusion images appears to offer advantages over qualitative assessment. Currently however, clinical translation is lacking, at least in part due to considerable disparity in quantification methodology. The aim of this study was to evaluate the effect of common methodological differences in CMR voxel-wise measurement of MBF, using position emission tomography (PET) as external validation. Methods: Eighteen subjects, including 9 with significant coronary artery disease (CAD) and 9 healthy volunteers prospectively underwent perfusion CMR. Comparison was made between MBF quantified using: 1. Calculated contrast agent concentration curves (to correct for signal saturation) versus raw signal intensity curves; 2. Mid-ventricular versus basal-ventricular short-axis arterial input function (AIF) extraction; 3. Three different deconvolution approaches; Fermi function parameterization, truncated singular value decomposition (TSVD) and first-order Tikhonov regularization with b-splines. CAD patients also prospectively underwent rubidium-82 PET (median interval 7 days). Results: MBF was significantly higher when calculated using signal intensity compared to contrast agent concentration curves, and when the AIF was extracted from mid- compared to basal-ventricular images. MBF did not differ significantly between Fermi and Tikhonov, or between Fermi and TVSD deconvolution methods although there was a small difference between TSVD and Tikhonov (0.06 mL/min/g). Agreement between all deconvolution methods was high. MBF derived using each CMR deconvolution method showed a significant linear relationship (p < 0.001) with PET-derived MBF however each method underestimated MBF compared to PET (by 0.19 to 0.35 mL/min/g). Conclusions: Variations in more complex methodological factors such as deconvolution method have no greater effect on estimated MBF than simple factors such as AIF location and observer variability. Standardization of the quantification process will aid comparison between studies and may help CMR MBF quantification enter clinical use.

History

Citation

Journal of Cardiovascular Magnetic Resonance 2014, 16 : 11

Author affiliation

/Organisation/COLLEGE OF MEDICINE, BIOLOGICAL SCIENCES AND PSYCHOLOGY/School of Medicine/Department of Cardiovascular Sciences

Version

  • VoR (Version of Record)

Published in

Journal of Cardiovascular Magnetic Resonance 2014

Publisher

BioMed Central

issn

1097-6647

Acceptance date

2014-01-13

Copyright date

2014

Available date

2015-07-10

Publisher version

http://www.jcmr-online.com/content/16/1/11

Language

en