posted on 2018-01-17, 11:33authored byA. A. Baranov, A. Mudrov, H. M. Shlaka
Let $A$ be a finite dimensional associative algebra over a perfect field and let $R$ be the radical of $A$. We show that for every one-sided ideal I of A there is a semisimple subalgebra $S$ of $A$ such that $I=I_S\oplus I_R$ where $I_S=I\cap S$ and $I_R=I\cap R$.
History
Citation
Communications in Algebra, 2018
Author affiliation
/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Mathematics
The file associated with this record is under embargo until 12 months after publication, in accordance with the publisher's self-archiving policy. The full text may be available through the publisher links provided above.