University of Leicester
Browse

X-ray properties of two transient ULX candidates in galaxy NGC 7090

Download (674.39 kB)
journal contribution
posted on 2019-06-11, 12:58 authored by Z Liu, PT O'Brien, JP Osborne, PA Evans, KL Page
We report the X-ray data analysis of two transient ultraluminous X-ray sources (ULXs, hereafter X1 and X2) located in the nearby galaxy NGC 7090. While they were not detected in the 2004 XMM-Newton and 2005 Chandra observations, their 0.3-10 keV X-ray luminosities reached $>3\times10^{39}\,\mathrm{erg\,s^{-1}}$ in later XMM-Newton or Swift observations, showing increases in flux by a factor of $>80$ and $>300$ for X1 and X2, respectively. X1 showed indications of spectral variability: at the highest luminosity, its X-ray spectra can be fitted with a powerlaw ($\Gamma=1.55\pm0.15$), or a multicolour disc model with $T_{\mathrm{in}}=2.07^{+0.30}_{-0.23}$ keV; the X-ray spectrum became softer ($\Gamma=2.67^{+0.69}_{-0.64}$), or cooler ($T_\mathrm{in}=0.64^{+0.28}_{-0.17}$ keV) at lower luminosity. No strong evidence for spectral variability was found for X2. Its X-ray spectra can be fitted with a simple powerlaw model ($\Gamma=1.61^{+0.55}_{-0.50}$), or a multicolour disc model ($1.69^{+1.17}_{-0.48}$ keV). A possible optical counterpart for X1 is revealed in HST imaging. No optical variability is found, indicating that the optical radiation may be dominated by the companion star. Future X-ray and optical observations are necessary to determine the true nature of the compact object.

Funding

ZL thanks the support from the China Scholarship Council. This work is supported by the Strategic Pioneer Program on Space Science, Chinese Academy of Sciences, Grant No. XDA15052100. PTOB acknowledges support from STFC. JPO, PAE, and KLP acknowledge support from the UK Space Agency. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. This work is based on observation obtained with XMM–Newton, an ESA science mission with instruments and contributions directly fund by ESA Member States and NASA, based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA) The Chandra data are obtained from the Chandra Data Archive. This research has made use of software provided by the Chandra X-ray Center (CXC) in the application packages CIAO.

History

Citation

Monthly Notices of the Royal Astronomical Society, 2019, 486, pp. 5709–5715

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Physics and Astronomy

Version

  • VoR (Version of Record)

Published in

Monthly Notices of the Royal Astronomical Society

Publisher

Oxford University Press (OUP), Royal Astronomical Society

eissn

1365-2966

Acceptance date

2019-04-26

Copyright date

2019

Available date

2019-06-11

Publisher version

https://academic.oup.com/mnras/article/486/4/5709/5484889

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC