posted on 2017-06-12, 15:04authored byIvana Celardo, Susann Lehmann, Ana C. Costa, Samantha H. Y. Loh, L. Miguel Martins
Neurons rely on mitochondria as their preferred source of energy. Mutations in PINK1 and PARKIN cause neuronal death in early-onset Parkinson’s disease (PD), thought to be due to mitochondrial dysfunction. In Drosophila pink1 and parkin mutants, mitochondrial defects lead to the compensatory upregulation of the mitochondrial one-carbon cycle metabolism genes by an unknown mechanism. Here we uncover that this branch is triggered by the activating transcription factor 4 (ATF4). We show that ATF4 regulates the expression of one-carbon metabolism genes SHMT2 and NMDMC as a protective response to mitochondrial toxicity. Suppressing Shmt2 or Nmdmc caused motor impairment and mitochondrial defects in flies. Epistatic analyses showed that suppressing the upregulation of Shmt2 or Nmdmc deteriorates the phenotype of pink1 or parkin mutants. Conversely, the genetic enhancement of these one-carbon metabolism genes in pink1 or parkin mutants was neuroprotective. We conclude that mitochondrial dysfunction caused by mutations in the Pink1/Parkin pathway engages ATF4-dependent activation of one-carbon metabolism as a protective response. Our findings show a central contribution of ATF4 signalling to PD that may represent a new therapeutic strategy. A video abstract for this article is available at https://youtu.be/cFJJm2YZKKM.
History
Citation
Cell Death and Differentiation, 2017, 24 (4), pp. 638-648
Author affiliation
/Organisation/COLLEGE OF MEDICINE, BIOLOGICAL SCIENCES AND PSYCHOLOGY/MBSP Non-Medical Departments/Molecular & Cell Biology
Version
VoR (Version of Record)
Published in
Cell Death and Differentiation
Publisher
Nature Publishing Group for Congregazione dei Figli dell'Immacolata Concezione (CFIC), Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Dermopatico dell'Immacolata (IDI-IRCCS)