University of Leicester
Browse
journal.pone.0011970[1].pdf (815.23 kB)

sRNAscanner: A Computational Tool for Intergenic Small RNA Detection in Bacterial Genomes

Download (815.23 kB)
journal contribution
posted on 2010-11-25, 12:16 authored by Jayavel Sridhar, Narmada Sambaturu, Radhakrishnan Sabarinathan, Hong-Yu Ou, Zixin Deng, Kanagaraj Sekar, Ziauddin Ahamed Rafi, Kumar Rajakumar
Background: Bacterial non-coding small RNAs (sRNAs) have attracted considerable attention due to their ubiquitous nature and contribution to numerous cellular processes including survival, adaptation and pathogenesis. Existing computational approaches for identifying bacterial sRNAs demonstrate varying levels of success and there remains considerable room for improvement. Methodology/Principal Findings: Here we have proposed a transcriptional signal-based computational method to identify intergenic sRNA transcriptional units (TUs) in completely sequenced bacterial genomes. Our sRNAscanner tool uses position weight matrices derived from experimentally defined E. coli K-12 MG1655 sRNA promoter and rho-independent terminator signals to identify intergenic sRNA TUs through sliding window based genome scans. Analysis of genomes representative of twelve species suggested that sRNAscanner demonstrated equivalent sensitivity to sRNAPredict2, the best performing bioinformatics tool available presently. However, each algorithm yielded substantial numbers of known and uncharacterized hits that were unique to one or the other tool only. sRNAscanner identified 118 novel putative intergenic sRNA genes in Salmonella enterica Typhimurium LT2, none of which were flagged by sRNAPredict2. Candidate sRNA locations were compared with available deep sequencing libraries derived from Hfq-co-immunoprecipitated RNA purified from a second Typhimurium strain (Sittka et al. (2008) PLoS Genetics 4: e1000163). Sixteen potential novel sRNAs computationally predicted and detected in deep sequencing libraries were selected for experimental validation by Northern analysis using total RNA isolated from bacteria grown under eleven different growth conditions. RNA bands of expected sizes were detected in Northern blots for six of the examined candidates. Furthermore, the 5’-ends of these six Northernsupported sRNA candidates were successfully mapped using 5’-RACE analysis. Conclusions/Significance: We have developed, computationally examined and experimentally validated the sRNAscanner algorithm. Data derived from this study has successfully identified six novel S. Typhimurium sRNA genes. In addition, the computational specificity analysis we have undertaken suggests that ~40% of sRNAscanner hits with high cumulative sum of scores represent genuine, undiscovered sRNA genes. Collectively, these data strongly support the utility of sRNAscanner and offer a glimpse of its potential to reveal large numbers of sRNA genes that have to date defied identification. sRNAscanner is available from: http://bicmku.in:8081/sRNAscanner or http://cluster.physics.iisc.ernet.in/sRNAscanner/.

History

Citation

Sridhar J, Narmada SR, Sabarinathan R, Ou H-Y, Deng Z, et al. (2010) sRNAscanner: A Computational Tool for Intergenic Small RNA Detection in Bacterial Genomes. PLoS ONE 5(8): e11970

Published in

Sridhar J

Publisher

Public Library of Science

issn

1932-6203

Copyright date

2010

Available date

2010-11-25

Publisher version

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0011970

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC